Follow
Dima Grigoriev
Dima Grigoriev
Directeur de recherche, CNRS, Lille
Verified email at math.univ-lille1.fr
Title
Cited by
Cited by
Year
Solving systems of polynomial inequalities in subexponential time.
NV D.Grigoriev
J. Symp. Comput 5, 37-64, 1988
4801988
Isomorphism of graphs with bounded eigenvalue multiplicity.
DM L.Babai, D.Grigoriev
14 ACM Symp. Th. Comput., 310-324, 1982
279*1982
Complexity of deciding Tarski algebra.
D Grigoriev
J. Symp. Comput 5, 65-108, 1988
2691988
Linear lower bound on degrees of Positivstellensatz calculus proofs for the parity
D Grigoriev
Theoretical Computer Science 259 (1-2), 613-622, 2001
2292001
Complexity of quantifier elimination in the theory of algebraically closed fields.
DG A.Chistov
Lecture Notes Computer Science 176, 17-31, 1984
2101984
Fast parallel algorithms for sparse multivariate polynomial interpolation over finite fields
DY Grigoriev, M Karpinski, MF Singer
SIAM Journal on Computing 19 (6), 1059-1063, 1990
1811990
The matching problem for bipartite graphs with polynomially bounded permanents is in NC
DY Grigoriev, M Karpinski
28th Annual Symposium on Foundations of Computer Science (sfcs 1987), 166-172, 1987
1631987
Linear Gaps Between Degrees for the Polynomial Calculus Modulo Distinct Primes.
TP D.Grigoriev, S.Buss, R.Impagliazzo
J. Comput. Syst. Sci. 62, 267-289, 2001
150*2001
Complexity of semi-algebraic proofs
D Grigoriev, EA Hirsch, DV Pasechnik
STACS 2002: 19th Annual Symposium on Theoretical Aspects of Computer Science …, 2002
1292002
An exponential lower bound for depth 3 arithmetic circuits
D Grigoriev, M Karpinski
Proceedings of the thirtieth annual ACM symposium on Theory of computing …, 1998
1221998
Complexity of factoring and GCD calculating of ordinary linear differential operators.
D Grigoriev
J. Symp. Comput. 10 (1), 7-37, 1990
122*1990
Exponential Complexity Lower Bounds for Depth 3 Arithmetic Circuits in Algebras of Functions over Finite Fields.
AR D.Grigoriev
Appl.Algebra in Eng.,Communic.,Comput, 465-487, 2000
116*2000
Exponential Complexity Lower Bounds for Depth 3 Arithmetic Circuits in Algebras of Functions over Finite Fields.
AR D.Grigoriev
Symp. Found.Comput.Sci, 269-278, 1998
116*1998
Complexity of Null-and Positivstellensatz proofs
D Grigoriev, N Vorobjov
Annals of Pure and Applied Logic 113 (1-3), 153-160, 2001
1082001
Counting connected components of a semialgebraic set in subexponential time.
NV D.Grigoriev
Computational Complexity 2 (2), 133-186, 1992
1061992
Polynomial factoring over a finite field and solving systems of algebraic equations.
D Grigoriev
J. Soviet Math 34, 1762-1803, 1986
101*1986
Tropical cryptography
D Grigoriev, V Shpilrain
Communications in Algebra 42 (6), 2624-2632, 2014
972014
Subexponential time solving systems of algebraic equations
AL Chistov, DY Grigoriev
LOMI preprint E-9-83, E-10-83, Steklov Institute, Leningrad, 1983
941983
Complexity of Positivstellensatz proofs for the knapsack
D Grigoriev
computational complexity 10, 139-154, 2001
932001
Polynomial-time factoring of the multivariable polynomials over a global field.
DG A.Chistov
Preprint LOMI 82 (E-5), 1-39, 1982
87*1982
The system can't perform the operation now. Try again later.
Articles 1–20