Suivre
Arvind Neelakantan
Arvind Neelakantan
Meta
Adresse e-mail validée de meta.com
Titre
Citée par
Citée par
Année
Language models are few-shot learners
TB Brown
arXiv preprint arXiv:2005.14165, 2020
331002020
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray
TB Brown, B Mann, N Ryder, M Subbiah, J Kaplan, P Dhariwal, ...
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford …, 2020
81872020
Gpt-4 technical report
J Achiam, S Adler, S Agarwal, L Ahmad, I Akkaya, FL Aleman, D Almeida, ...
arXiv preprint arXiv:2303.08774, 2023
42402023
GPT-4 technical report
R OpenAI
ArXiv 2303, 08774, 2023
11142023
Adding gradient noise improves learning for very deep networks
A Neelakantan, L Vilnis, QV Le, I Sutskever, L Kaiser, K Kurach, J Martens
International Conference on Learning Representations Workshop (ICLR Workshop …, 2015
6202015
Efficient non-parametric estimation of multiple embeddings per word in vector space
A Neelakantan, J Shankar, A Passos, A McCallum
Conference on Empirical Methods in Natural Language Processing, 2014, 2015
6152015
Text and code embeddings by contrastive pre-training
A Neelakantan, T Xu, R Puri, A Radford, JM Han, J Tworek, Q Yuan, ...
arXiv preprint arXiv:2201.10005, 2022
3632022
Compositional vector space models for knowledge base completion
A Neelakantan, B Roth, A McCallum
arXiv preprint arXiv:1504.06662, 2015
3532015
Chains of reasoning over entities, relations, and text using recurrent neural networks
R Das, A Neelakantan, D Belanger, A McCallum
European Chapter of the Association for Computational Linguistics (EACL), 2017., 2016
3302016
Neural programmer: Inducing latent programs with gradient descent
A Neelakantan, QV Le, I Sutskever
International Conference on Learning Representations (ICLR), 2016, 2015
2952015
Taskmaster-1: Toward a realistic and diverse dialog dataset
B Byrne, K Krishnamoorthi, C Sankar, A Neelakantan, D Duckworth, ...
arXiv preprint arXiv:1909.05358, 2019
2222019
Language Models are Few-Shot Learners. 2020. doi: 10.48550
TB Brown, B Mann, N Ryder, M Subbiah, J Kaplan, P Dhariwal, ...
arxiv, 5-7, 2005
2052005
Learning a natural language interface with neural programmer
A Neelakantan, QV Le, M Abadi, A McCallum, D Amodei
International Conference on Learning Representations (ICLR), 2017., 2016
1372016
Language models are few-shot learners (arXiv: 2005.14165). arXiv
TB Brown, B Mann, N Ryder, M Subbiah, J Kaplan, P Dhariwal, ...
992005
& Amodei, D.(2020)
TB Brown, B Mann, N Ryder, M Subbiah, J Kaplan, P Dhariwal, ...
Language models are few-shot learners, 2005
942005
Inferring Missing Entity Type Instances for Knowledge Base Completion: New Dataset and Methods
A Neelakantan, MW Chang
The North American Chapter of the Association for Computational Linguistics …, 2015
932015
Language models are few-shot learners
B Mann, N Ryder, M Subbiah, J Kaplan, P Dhariwal, A Neelakantan, ...
arXiv preprint arXiv:2005.14165 1, 2020
892020
Theory and experiments on vector quantized autoencoders
A Roy, A Vaswani, A Neelakantan, N Parmar
arXiv preprint arXiv:1805.11063, 2018
892018
Compositional vector space models for knowledge base inference
A Neelakantan, B Roth, A McCallum
2015 aaai spring symposium series, 2015
832015
Trading off diversity and quality in natural language generation
H Zhang, D Duckworth, D Ippolito, A Neelakantan
arXiv preprint arXiv:2004.10450, 2020
812020
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–20