Suivre
George Em Karniadakis
George Em Karniadakis
The Charles Pitts Robinson and John Palmer Barstow Professor of Applied Mathematics and Engineering
Adresse e-mail validée de brown.edu - Page d'accueil
Titre
Citée par
Citée par
Année
Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
M Raissi, P Perdikaris, GE Karniadakis
Journal of Computational physics 378, 686-707, 2019
119402019
The Wiener--Askey polynomial chaos for stochastic differential equations
D Xiu, GE Karniadakis
SIAM journal on scientific computing 24 (2), 619-644, 2002
59322002
Physics-informed machine learning
GE Karniadakis, IG Kevrekidis, L Lu, P Perdikaris, S Wang, L Yang
Nature Reviews Physics 3 (6), 422-440, 2021
45822021
Microflows and nanoflows: fundamentals and simulation
G Karniadakis, A Beskok, N Aluru
Springer Science & Business Media, 2006
4130*2006
Spectral/hp element methods for computational fluid dynamics
G Karniadakis, SJ Sherwin
Oxford University Press, USA, 2005
35852005
Discontinuous Galerkin methods: theory, computation and applications
B Cockburn, GE Karniadakis, CW Shu
Springer Science & Business Media, 2012
3065*2012
Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators
L Lu, P Jin, G Pang, Z Zhang, GE Karniadakis
Nature machine intelligence 3 (3), 218-229, 2021
19472021
DeepXDE: A deep learning library for solving differential equations
L Lu, X Meng, Z Mao, GE Karniadakis
SIAM review 63 (1), 208-228, 2021
18972021
High-order splitting methods for the incompressible Navier-Stokes equations
GE Karniadakis, M Israeli, SA Orszag
Journal of computational physics 97 (2), 414-443, 1991
18191991
Modeling uncertainty in flow simulations via generalized polynomial chaos
D Xiu, GE Karniadakis
Journal of computational physics 187 (1), 137-167, 2003
17982003
Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations
M Raissi, A Yazdani, GE Karniadakis
Science 367 (6481), 1026-1030, 2020
16902020
Physics informed deep learning (part i): Data-driven solutions of nonlinear partial differential equations
M Raissi, P Perdikaris, GE Karniadakis
arXiv preprint arXiv:1711.10561, 2017
15812017
Report: a model for flows in channels, pipes, and ducts at micro and nano scales
A Beskok, GE Karniadakis
Microscale thermophysical engineering 3 (1), 43-77, 1999
15501999
Hidden physics models: Machine learning of nonlinear partial differential equations
M Raissi, GE Karniadakis
Journal of Computational Physics 357, 125-141, 2018
13662018
Physics-informed neural networks (PINNs) for fluid mechanics: A review
S Cai, Z Mao, Z Wang, M Yin, GE Karniadakis
Acta Mechanica Sinica 37 (12), 1727-1738, 2021
11972021
Physics-informed neural networks for high-speed flows
Z Mao, AD Jagtap, GE Karniadakis
Computer Methods in Applied Mechanics and Engineering 360, 112789, 2020
10252020
NSFnets (Navier-Stokes flow nets): Physics-informed neural networks for the incompressible Navier-Stokes equations
X Jin, S Cai, H Li, GE Karniadakis
Journal of Computational Physics 426, 109951, 2021
9802021
Adaptive activation functions accelerate convergence in deep and physics-informed neural networks
AD Jagtap, K Kawaguchi, GE Karniadakis
Journal of Computational Physics 404, 109136, 2020
936*2020
Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems
AD Jagtap, E Kharazmi, GE Karniadakis
Computer Methods in Applied Mechanics and Engineering 365, 113028, 2020
8202020
B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data
L Yang, X Meng, GE Karniadakis
Journal of Computational Physics 425, 109913, 2021
8172021
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–20