Konstantinos Karanasos
Konstantinos Karanasos
Data Infra at Meta
Adresse e-mail validée de - Page d'accueil
Citée par
Citée par
Mercury: Hybrid centralized and distributed scheduling in large shared clusters
K Karanasos, S Rao, C Curino, C Douglas, K Chaliparambil, ...
2015 USENIX Annual Technical Conference (USENIX ATC 15), 485-497, 2015
Wanalytics: Geo-distributed analytics for a data intensive world
A Vulimiri, C Curino, PB Godfrey, T Jungblut, K Karanasos, J Padhye, ...
Proceedings of the 2015 ACM SIGMOD international conference on management of …, 2015
Efficient queue management for cluster scheduling
J Rasley, K Karanasos, S Kandula, R Fonseca, M Vojnovic, S Rao
Proceedings of the Eleventh European Conference on Computer Systems, 1-15, 2016
View selection in semantic web databases
F Goasdoué, K Karanasos, J Leblay, I Manolescu
arXiv preprint arXiv:1110.6648, 2011
Medea scheduling of long running applications in shared production clusters
P Garefalakis, K Karanasos, P Pietzuch, A Suresh, S Rao
Proceedings of the thirteenth EuroSys conference, 1-13, 2018
Selecting subexpressions to materialize at datacenter scale
A Jindal, K Karanasos, S Rao, H Patel
Proceedings of the VLDB Endowment 11 (7), 800-812, 2018
Hydra: a federated resource manager for data-center scale analytics
C Curino, S Krishnan, K Karanasos, S Rao, GM Fumarola, B Huang, ...
16th USENIX Symposium on Networked Systems Design and Implementation (NSDI …, 2019
Extending relational query processing with ML inference
K Karanasos, M Interlandi, D Xin, F Psallidas, R Sen, K Park, I Popivanov, ...
arXiv preprint arXiv:1911.00231, 2019
Computation reuse in analytics job service at microsoft
A Jindal, S Qiao, H Patel, Z Yin, J Di, M Bag, M Friedman, Y Lin, ...
Proceedings of the 2018 International Conference on Management of Data, 191-203, 2018
Data science through the looking glass: Analysis of millions of github notebooks and ml. net pipelines
F Psallidas, Y Zhu, B Karlas, J Henkel, M Interlandi, S Krishnan, B Kroth, ...
ACM SIGMOD Record 51 (2), 30-37, 2022
A tensor compiler for unified machine learning prediction serving
S Nakandala, K Saur, GI Yu, K Karanasos, C Curino, M Weimer, ...
14th USENIX Symposium on Operating Systems Design and Implementation (OSDI …, 2020
Fact checking and analyzing the web
F Goasdoué, K Karanasos, Y Katsis, J Leblay, I Manolescu, S Zampetakis
Proceedings of the 2013 ACM SIGMOD International Conference on Management of …, 2013
Dynamically optimizing queries over large scale data platforms
K Karanasos, A Balmin, M Kutsch, F Ozcan, V Ercegovac, C Xia, ...
Proceedings of the 2014 ACM SIGMOD international conference on Management of …, 2014
End-to-end optimization of machine learning prediction queries
K Park, K Saur, D Banda, R Sen, M Interlandi, K Karanasos
Proceedings of the 2022 International Conference on Management of Data, 587-601, 2022
Cloudy with high chance of DBMS: A 10-year prediction for Enterprise-Grade ML
A Agrawal, R Chatterjee, C Curino, A Floratou, N Gowdal, M Interlandi, ...
arXiv preprint arXiv:1909.00084, 2019
Efficient XQuery rewriting using multiple views
I Manolescu, K Karanasos, V Vassalos, S Zoupanos
2011 IEEE 27th International Conference on Data Engineering, 972-983, 2011
Query processing on tensor computation runtimes
D He, S Nakandala, D Banda, R Sen, K Saur, K Park, C Curino, ...
arXiv preprint arXiv:2203.01877, 2022
Growing triples on trees: an XML-RDF hybrid model for annotated documents
F Goasdoué, K Karanasos, Y Katsis, J Leblay, I Manolescu, S Zampetakis
The VLDB Journal 22, 589-613, 2013
Neptune: Scheduling suspendable tasks for unified stream/batch applications
P Garefalakis, K Karanasos, P Pietzuch
Proceedings of the ACM symposium on cloud computing, 233-245, 2019
Query and resource optimization: Bridging the gap
L Viswanathan, A Jindal, K Karanasos
2018 IEEE 34th International Conference on Data Engineering (ICDE), 1384-1387, 2018
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–20