Suivre
Nissrine Akkari
Nissrine Akkari
Safran
Adresse e-mail validée de safrangroup.com
Titre
Citée par
Citée par
Année
Model order reduction assisted by deep neural networks (ROM-net)
T Daniel, F Casenave, N Akkari, D Ryckelynck
Advanced Modeling and Simulation in Engineering Sciences 7, 1-27, 2020
1012020
A nonintrusive distributed reduced‐order modeling framework for nonlinear structural mechanics—Application to elastoviscoplastic computations
F Casenave, N Akkari, F Bordeu, C Rey, D Ryckelynck
International journal for numerical methods in engineering 121 (1), 32-53, 2020
422020
Time stable reduced order modeling by an enhanced reduced order basis of the turbulent and incompressible 3D Navier–Stokes equations
N Akkari, F Casenave, V Moureau
Mathematical and computational applications 24 (2), 45, 2019
292019
A mathematical and numerical study of the sensitivity of a reduced order model by POD (ROM–POD), for a 2D incompressible fluid flow
N Akkari, A Hamdouni, E Liberge, M Jazar
Journal of Computational and Applied Mathematics 270, 522-530, 2014
282014
Physics-informed cluster analysis and a priori efficiency criterion for the construction of local reduced-order bases
T Daniel, F Casenave, N Akkari, A Ketata, D Ryckelynck
Journal of Computational Physics 458, 111120, 2022
242022
On the sensitivity of the POD technique for a parameterized quasi-nonlinear parabolic equation
N Akkari, A Hamdouni, E Liberge, M Jazar
Advanced Modeling and Simulation in Engineering Sciences 1, 1-16, 2014
172014
Data augmentation and feature selection for automatic model recommendation in computational physics
T Daniel, F Casenave, N Akkari, D Ryckelynck
Mathematical and Computational Applications 26 (1), 17, 2021
142021
An error indicator-based adaptive reduced order model for nonlinear structural mechanics—application to high-pressure turbine blades
F Casenave, N Akkari
Mathematical and computational applications 24 (2), 41, 2019
132019
A bayesian nonlinear reduced order modeling using variational autoencoders
N Akkari, F Casenave, E Hachem, D Ryckelynck
Fluids 7 (10), 334, 2022
122022
Stable pod-galerkin reduced order models for unsteady turbulent incompressible flows
N Akkari, R Mercier, G Lartigue, V Moureau
55th AIAA Aerospace Sciences Meeting, 1000, 2017
112017
Uncertainty quantification for industrial numerical simulation using dictionaries of reduced order models
T Daniel, F Casenave, N Akkari, D Ryckelynck, C Rey
Mechanics & Industry 23, 3, 2022
92022
Geometrical reduced order modeling (ROM) by proper orthogonal decomposition (POD) for the incompressible Navier Stokes equations
N Akkari, R Mercier, V Moureau
2018 AIAA Aerospace Sciences Meeting, 1827, 2018
82018
Deep convolutional generative adversarial networks applied to 2D incompressible and unsteady fluid flows
N Akkari, F Casenave, ME Perrin, D Ryckelynck
Science and Information Conference, 264-276, 2020
72020
Data-targeted prior distribution for variational autoencoder
N Akkari, F Casenave, T Daniel, D Ryckelynck
Fluids 6 (10), 343, 2021
62021
An updated Gappy-POD to capture non-parameterized geometrical variation in fluid dynamics problems
N Akkari, F Casenave, D Ryckelynck, C Rey
Advanced Modeling and Simulation in Engineering Sciences 9 (1), 3, 2022
52022
Mathematical and numerical results on the sensitivity of the POD approximation relative to the Burgers equation
N Akkari, A Hamdouni, M Jazar
Applied Mathematics and Computation 247, 951-961, 2014
52014
Mathematical study of the sensitivity of the POD method (Proper orthogonal decomposition)
N Akkari
Theses, Université de La Rochelle, 2012
52012
A priori compression of convolutional neural networks for wave simulators
H Boukraichi, N Akkari, F Casenave, D Ryckelynck
Engineering Applications of Artificial Intelligence 126, 106973, 2023
42023
A velocity potential preserving reduced order approach for the incompressible and unsteady Navier-Stokes equations
N Akkari
AIAA Scitech 2020 Forum, 1573, 2020
42020
Uncertainty quantification in a mechanical submodel driven by a Wasserstein-GAN
H Boukraichi, N Akkari, F Casenave, D Ryckelynck
IFAC-PapersOnLine 55 (20), 469-474, 2022
32022
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–20