Sylvestre-Alvise Rebuffi
Sylvestre-Alvise Rebuffi
DeepMind
Adresse e-mail validée de deepmind.com
Titre
Citée par
Citée par
Année
iCaRL: Incremental Classifier and Representation Learning
SA Rebuffi, A Kolesnikov, G Sperl, CH Lampert
CVPR 2017, 2017
9192017
Learning multiple visual domains with residual adapters
SA Rebuffi, H Bilen, A Vedaldi
NIPS 2017, 2017
2892017
Efficient parametrization of multi-domain deep neural networks
SA Rebuffi, H Bilen, A Vedaldi
CVPR 2018, 2018
1662018
Modeling of Store Gletscher's calving dynamics, West Greenland, in response to ocean thermal forcing
M Morlighem, J Bondzio, H Seroussi, E Rignot, E Larour, A Humbert, ...
Geophysical Research Letters 43 (6), 2659-2666, 2016
892016
There and Back Again: Revisiting Backpropagation Saliency Methods
SA Rebuffi, R Fong, X Ji, A Vedaldi
CVPR 2020, 2020
312020
Automatically Discovering and Learning New Visual Categories with Ranking Statistics
K Han, SA Rebuffi, S Ehrhardt, A Vedaldi, A Zisserman
ICLR 2020, 2020
292020
Semi-supervised learning with scarce annotations
SA Rebuffi, S Ehrhardt, K Han, A Vedaldi, A Zisserman
Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2020
252020
Lsd-c: Linearly separable deep clusters
SA Rebuffi, S Ehrhardt, K Han, A Vedaldi, A Zisserman
arXiv preprint arXiv:2006.10039, 2020
82020
Fixing data augmentation to improve adversarial robustness
SA Rebuffi, S Gowal, DA Calian, F Stimberg, O Wiles, T Mann
arXiv preprint arXiv:2103.01946, 2021
42021
Defending Against Image Corruptions Through Adversarial Augmentations
DA Calian, F Stimberg, O Wiles, SA Rebuffi, A Gyorgy, T Mann, S Gowal
arXiv preprint arXiv:2104.01086, 2021
12021
AutoNovel: Automatically Discovering and Learning Novel Visual Categories
K Han, SA Rebuffi, S Ehrhardt, A Vedaldi, A Zisserman
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021
2021
Influence of the input data on learning deep representations
SA Rebuffi
University of Oxford, 2020
2020
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–12