Discontinuity of the phase transition for the planar random-cluster and Potts models with H Duminil-Copin, M Gagnebin, M Harel, I Manolescu, V Tassion
arXiv preprint arXiv:1611.09877, 2016
76 2016 Inhomogeneous bond percolation on square, triangular and hexagonal lattices GR Grimmett, I Manolescu
41 2013 Scaling limits and influence of the seed graph in preferential attachment trees N Curien, T Duquesne, I Kortchemski, I Manolescu
Journal de l’Ecole polytechnique—Mathématiques 2, 1-34, 2015
38 2015 Bond percolation on isoradial graphs: criticality and universality GR Grimmett, I Manolescu
Probability Theory and Related Fields 159, 273-327, 2014
37 2014 Universality for the random-cluster model on isoradial graphs H Duminil-Copin, JH Li, I Manolescu
33 2018 Planar lattices do not recover from forest fires D Kiss, I Manolescu, V Sidoravicius
The Annals of Probability, 3216-3238, 2015
29 2015 Uniform Lipschitz functions on the triangular lattice have logarithmic variations A Glazman, I Manolescu
Communications in mathematical physics 381 (3), 1153-1221, 2021
25 2021 The phase transitions of the planar random-cluster and Potts models with q≥ 1 are sharp H Duminil-Copin, I Manolescu
23 2014 Universality for bond percolation in two dimensions GR Grimmett, I Manolescu
22 2013 Planar random-cluster model: fractal properties of the critical phase H Duminil-Copin, I Manolescu, V Tassion
Probability Theory and Related Fields 181 (1-3), 401-449, 2021
19 2021 The Bethe ansatz for the six-vertex and XXZ models: An exposition H Duminil-Copin, M Gagnebin, M Harel, I Manolescu, V Tassion
19 2018 Rotational invariance in critical planar lattice models H Duminil-Copin, KK Kozlowski, D Krachun, I Manolescu, M Oulamara
arXiv preprint arXiv:2012.11672, 2020
17 2020 Delocalization of the height function of the six-vertex model H Duminil-Copin, A Karrila, I Manolescu, M Oulamara
arXiv preprint arXiv:2012.13750, 2020
15 2020 Discontinuity of the phase transition for the planar random-cluster and Potts models with q> 4 H Duminil-Copin, M Gagnebin, M Harel, I Manolescu, V Tassion
Annales Scientifiques de l'Ecole Normale Supérieure 54 (6), 1363-1413, 2021
14 2021 On the probability that self-avoiding walk ends at a given point H Duminil-Copin, A Glazman, A Hammond, I Manolescu
14 2016 Planar random-cluster model: scaling relations H Duminil-Copin, I Manolescu
Forum of Mathematics, Pi 10, e23, 2022
12 2022 On the six-vertex model’s free energy H Duminil-Copin, KK Kozlowski, D Krachun, I Manolescu, ...
Communications in Mathematical Physics 395 (3), 1383-1430, 2022
7 2022 Bounding the number of self-avoiding walks: Hammersley–Welsh with polygon insertion H Duminil-Copin, S Ganguly, A Hammond, I Manolescu
6 2020 Exponential decay in the loop model: , A Glazman, I Manolescu
arXiv preprint arXiv:1810.11302, 2018
6 * 2018 Universality for planar percolation I Manolescu
University of Cambridge, 2012
5 2012