Exact combinatorial optimization with graph convolutional neural networks M Gasse, D Chételat, N Ferroni, L Charlin, A Lodi arXiv preprint arXiv:1906.01629, 2019 | 66 | 2019 |
High-quality plane wave compounding using convolutional neural networks M Gasse, F Millioz, E Roux, D Garcia, H Liebgott, D Friboulet IEEE transactions on ultrasonics, ferroelectrics, and frequency control 64 …, 2017 | 62 | 2017 |
A hybrid algorithm for Bayesian network structure learning with application to multi-label learning M Gasse, A Aussem, H Elghazel Expert Systems with Applications 41 (15), 6755-6772, 2014 | 41 | 2014 |
The scip optimization suite 7.0 G Gamrath, D Anderson, K Bestuzheva, WK Chen, L Eifler, M Gasse, ... | 37 | 2020 |
An experimental comparison of hybrid algorithms for Bayesian network structure learning M Gasse, A Aussem, H Elghazel Joint European Conference on Machine Learning and Knowledge Discovery in …, 2012 | 27 | 2012 |
On the optimality of multi-label classification under subset zero-one loss for distributions satisfying the composition property M Gasse, A Aussem, H Elghazel International Conference on Machine Learning, 2531-2539, 2015 | 15 | 2015 |
Hybrid models for learning to branch P Gupta, M Gasse, EB Khalil, MP Kumar, A Lodi, Y Bengio arXiv preprint arXiv:2006.15212, 2020 | 6 | 2020 |
F-measure maximization in multi-label classification with conditionally independent label subsets M Gasse, A Aussem Joint European Conference on Machine Learning and Knowledge Discovery in …, 2016 | 5 | 2016 |
On generalized surrogate duality in mixed-integer nonlinear programming B Müller, G Muñoz, M Gasse, A Gleixner, A Lodi, F Serrano International Conference on Integer Programming and Combinatorial …, 2020 | 4 | 2020 |
Accelerating plane wave imaging through deep learning-based reconstruction: An experimental study M Gasse, F Millioz, E Roux, H Liebgott, D Friboulet 2017 IEEE International Ultrasonic Symposium (IUS), 2017 | 3 | 2017 |
Probabilistic Graphical Model Structure Learning: Application to Multi-Label Classification M Gasse Université de Lyon, 2017 | 3 | 2017 |
A deep learning framework for spatiotemporal ultrasound localization microscopy L Milecki, J Porée, H Belgharbi, C Bourquin, R Damseh, ... IEEE Transactions on Medical Imaging, 2021 | 1 | 2021 |
Ecole: A Gym-like Library for Machine Learning in Combinatorial Optimization Solvers A Prouvost, J Dumouchelle, L Scavuzzo, M Gasse, D Chételat, A Lodi arXiv preprint arXiv:2011.06069, 2020 | 1 | 2020 |
Analysis of risk factors of hip fracture with causal Bayesian networks A Aussem, P Caillet, S Klemm, M Gasse, AM Schott, M Ducher International Work-Conference on Bioinformatics and Biomedical Engineering …, 2014 | 1 | 2014 |
Optimal sensor locations for polymer injection molding process D Garcia, R Le Goff, M Gasse, A Aussem Key Engineering Materials 611, 1724-1733, 2014 | 1 | 2014 |
Ecole: A Library for Learning Inside MILP Solvers A Prouvost, J Dumouchelle, M Gasse, D Chételat, A Lodi arXiv preprint arXiv:2104.02828, 2021 | | 2021 |
On the Effectiveness of Two-Step Learning for Latent-Variable Models C Subakan, M Gasse, L Charlin 2020 IEEE 30th International Workshop on Machine Learning for Signal …, 2020 | | 2020 |
On the use of binary stochastic autoencoders for multi-label classification under the zero-one loss D Lecoeuche, A Aussem, M Gasse Procedia computer science 144, 71-80, 2018 | | 2018 |
Apprentissage de Structure de Modèles Graphiques Probabilistes: Application à la Classification Multi-Label M Gasse Université Lyon 1, 2017 | | 2017 |
Identifying the irreducible disjoint factors of a multivariate probability distribution M Gasse, A Aussem Conference on Probabilistic Graphical Models, 183-194, 2016 | | 2016 |