Abdul Dakkak
Abdul Dakkak
Microsoft Research
Adresse e-mail validée de microsoft.com - Page d'accueil
Titre
Citée par
Citée par
Année
Accelerating reduction and scan using tensor core units
A Dakkak, C Li, J Xiong, I Gelado, W Hwu
Proceedings of the ACM International Conference on Supercomputing, 46-57, 2019
202019
Recovering missing depth information from Microsoft’s Kinect
A Dakkak, A Husain
Proc. Embedded Vis. Alliance, 1-9, 2012
182012
Triolet: A programming system that unifies algorithmic skeleton interfaces for high-performance cluster computing
C Rodrigues, T Jablin, A Dakkak, WM Hwu
ACM SIGPLAN Notices 49 (8), 247-258, 2014
142014
Enhancing the usability and utilization of accelerated architectures via docker
N Haydel, S Gesing, I Taylor, G Madey, A Dakkak, SG De Gonzalo, ...
2015 IEEE/ACM 8th International Conference on Utility and Cloud Computing …, 2015
122015
Tangram: a high-level language for performance portable code synthesis
LW Chang, A Dakkak, CI Rodrigues, W Hwu
Programmability Issues for Heterogeneous Multicores, 2015
122015
Trims: Transparent and isolated model sharing for low latency deep learning inference in function-as-a-service
A Dakkak, C Li, SG De Gonzalo, J Xiong, W Hwu
2019 IEEE 12th International Conference on Cloud Computing (CLOUD), 372-382, 2019
102019
Evaluating characteristics of CUDA communication primitives on high-bandwidth interconnects
C Pearson, A Dakkak, S Hashash, C Li, IH Chung, J Xiong, WM Hwu
Proceedings of the 2019 ACM/SPEC International Conference on Performance …, 2019
102019
Webgpu: A scalable online development platform for gpu programming courses
A Dakkak, C Pearson, W Hwu
2016 IEEE International Parallel and Distributed Processing Symposium …, 2016
102016
Mlmodelscope: Evaluate and measure ml models within ai pipelines
A Dakkak, C Li, A Srivastava, J Xiong, WM Hwu
arXiv preprint arXiv:1811.09737, 2018
62018
Across-stack profiling and characterization of machine learning models on GPUs
C Li, A Dakkak, J Xiong, W Wei, L Xu, WM Hwu
Unknown Journal, 2019
52019
Frustrated with replicating claims of a shared model? a solution
A Dakkak, C Li, J Xiong, WM Hwu
arXiv preprint arXiv:1811.09737, 2018
52018
A programming system for future proofing performance critical libraries
LW Chang, I El Hajj, HS Kim, J Gómez-Luna, A Dakkak, W Hwu
ACM SIGPLAN Notices 51 (8), 1-2, 2016
52016
Transitioning HPC software to exascale heterogeneous computing
WM Hwu, LW Chang, HS Kim, A Dakkak, I El Hajj
2015 Computational Electromagnetics International Workshop (CEM), 1-2, 2015
52015
Xsp: Across-stack profiling and analysis of machine learning models on gpus
C Li, A Dakkak, J Xiong, W Wei, L Xu, W Hwu
2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS …, 2020
42020
RAI: A scalable project submission system for parallel programming courses
A Dakkak, C Pearson, C Li, W Hwu
2017 IEEE International Parallel and Distributed Processing Symposium …, 2017
42017
Benanza: Automatic μBenchmark Generation to Compute" Lower-bound" Latency and Inform Optimizations of Deep Learning Models on GPUs
C Li, A Dakkak, J Xiong, W Hwu
2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS …, 2020
32020
The design and implementation of a scalable dl benchmarking platform
C Li, A Dakkak, J Xiong, W Hwu
arXiv preprint arXiv:1911.08031, 2019
32019
Thoughts on massively-parallel heterogeneous computing for solving large problems
W Hwu, M Hidayetoglu, WC Chew, C Pearson, S Garcia, S Huang, ...
2017 Computing and Electromagnetics International Workshop (CEM), 67-68, 2017
32017
Challenges and pitfalls of reproducing machine learning artifacts
C Li, A Dakkak, J Xiong, W mei Hwu
CoRR, abs/1904.12437, 2019
22019
FFT blitz: the tensor cores strike back
S Durrani, MS Chughtai, A Dakkak, W Hwu, L Rauchwerger
Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of …, 2021
12021
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–20