Higher inductive types in programming H Basold, H Geuvers, NM van der Weide | 34 | 2017 |
Finite sets in homotopy type theory D Frumin, H Geuvers, L Gondelman, N Weide Proceedings of the 7th ACM SIGPLAN International Conference on Certified …, 2018 | 27 | 2018 |
Bicategories in univalent foundations B Ahrens, D Frumin, M Maggesi, N Veltri, N Van Der Weide Mathematical Structures in Computer Science 31 (10), 1232-1269, 2021 | 25 | 2021 |
Constructing higher inductive types as groupoid quotients N Veltri, N Van Der Weide Logical Methods in Computer Science 17, 2021 | 11* | 2021 |
Guarded recursion in agda via sized types N Veltri, N van der Weide 4th International Conference on Formal Structures for Computation and …, 2019 | 11 | 2019 |
Higher inductive types N van der Weide Radboud University, Nijmegen. Master’s thesis, 2016 | 9 | 2016 |
The construction of set-truncated higher inductive types N van der Weide, H Geuvers Electronic Notes in Theoretical Computer Science 347, 261-280, 2019 | 5 | 2019 |
Bicategorical type theory: semantics and syntax B Ahrens, PR North, N Van Der Weide Mathematical Structures in Computer Science, 1-45, 2023 | 4* | 2023 |
Certifying Higher-Order Polynomial Interpretations N van der Weide, D Vale, C Kop arXiv preprint arXiv:2302.11892, 2023 | 2 | 2023 |
Univalent Double Categories N van der Weide, N Rasekh, B Ahrens, PR North arXiv preprint arXiv:2310.09220, 2023 | 1 | 2023 |
The Formal Theory of Monads, Univalently N van der Weide arXiv preprint arXiv:2212.08515, 2022 | 1 | 2022 |
Constructing Higher Inductive Types NM van der Weide [Sl]:[Sn], 2020 | 1 | 2020 |
Bachelor’s Thesis Computing Science D Blankvoort, N van der Weide, F Wiedijk | | 2023 |
Enriched Categories in Univalent Foundations N van der Weide 29th International Conference on Types for Proofs and Programs TYPES 2023 …, 2023 | | 2023 |
nmvdw/Nijn: 1.0. 0 NM van der Weide, D Vale Zenodo, 2023 | | 2023 |
Nijn/ONijn: A New Certification Engine for Higher-Order Termination C Kop, D Vale, NM van der Weide Sl: sn, 2023 | | 2023 |
Formalizing Higher-Order Termination in Coq D Vale, N van der Weide arXiv preprint arXiv:2112.05715, 2021 | | 2021 |
Free Algebraic Theories as Higher Inductive Types H Basold, N van der Weide, N Veltri | | 2019 |
Category Theory in UniMath N van der Weide | | 2019 |
1-Types versus Groupoids N van der Weide, D Frumin, H Geuvers TYPES 2018, 86, 2018 | | 2018 |