Follow
Hugh Leather
Hugh Leather
Verified email at inf.ed.ac.uk
Title
Cited by
Cited by
Year
End-to-end deep learning of optimization heuristics
C Cummins, P Petoumenos, Z Wang, H Leather
2017 26th International Conference on Parallel Architectures and Compilation …, 2017
2552017
Automatic feature generation for machine learning--based optimising compilation
H Leather, E Bonilla, M O'boyle
ACM Transactions on Architecture and Code Optimization (TACO) 11 (1), 1-32, 2014
2212014
Compiler fuzzing through deep learning
C Cummins, P Petoumenos, A Murray, H Leather
Proceedings of the 27th ACM SIGSOFT international symposium on software …, 2018
1742018
MILEPOST GCC: machine learning based research compiler
G Fursin, C Miranda, O Temam, M Namolaru, E Yom-Tov, A Zaks, ...
Proceedings of the GCC Developers' Summit, 2008
1712008
Emergency evacuation using wireless sensor networks
M Barnes, H Leather, DK Arvind
32nd IEEE Conference on Local Computer Networks (LCN 2007), 851-857, 2007
1472007
Synthesizing benchmarks for predictive modeling
C Cummins, P Petoumenos, Z Wang, H Leather
2017 IEEE/ACM International Symposium on Code Generation and Optimization …, 2017
1212017
Programl: A graph-based program representation for data flow analysis and compiler optimizations
C Cummins, ZV Fisches, T Ben-Nun, T Hoefler, MFP O’Boyle, H Leather
International Conference on Machine Learning, 2244-2253, 2021
1132021
Programl: Graph-based deep learning for program optimization and analysis
C Cummins, ZV Fisches, T Ben-Nun, T Hoefler, H Leather
arXiv preprint arXiv:2003.10536, 2020
782020
Compilergym: Robust, performant compiler optimization environments for ai research
C Cummins, B Wasti, J Guo, B Cui, J Ansel, S Gomez, S Jain, J Liu, ...
2022 IEEE/ACM International Symposium on Code Generation and Optimization …, 2022
722022
Minimizing the cost of iterative compilation with active learning
WF Ogilvie, P Petoumenos, Z Wang, H Leather
2017 IEEE/ACM international symposium on code generation and optimization …, 2017
692017
Code translation with compiler representations
M Szafraniec, B Roziere, H Leather, F Charton, P Labatut, G Synnaeve
arXiv preprint arXiv:2207.03578, 2022
632022
Machine learning in compilers: Past, present and future
H Leather, C Cummins
2020 Forum for Specification and Design Languages (FDL), 1-8, 2020
552020
Value learning for throughput optimization of deep learning workloads
B Steiner, C Cummins, H He, H Leather
Proceedings of Machine Learning and Systems 3, 323-334, 2021
502021
Power capping: What works, what does not
P Petoumenos, L Mukhanov, Z Wang, H Leather, DS Nikolopoulos
2015 IEEE 21st International Conference on Parallel and Distributed Systems …, 2015
452015
Fast automatic heuristic construction using active learning
WF Ogilvie, P Petoumenos, Z Wang, H Leather
Languages and Compilers for Parallel Computing: 27th International Workshop …, 2015
442015
Cruxeval: A benchmark for code reasoning, understanding and execution
A Gu, B Rozičre, H Leather, A Solar-Lezama, G Synnaeve, SI Wang
arXiv preprint arXiv:2401.03065, 2024
402024
Function merging by sequence alignment
RCO Rocha, P Petoumenos, Z Wang, M Cole, H Leather
2019 IEEE/ACM International Symposium on Code Generation and Optimization …, 2019
392019
Autotuning OpenCL workgroup size for stencil patterns
C Cummins, P Petoumenos, M Steuwer, H Leather
arXiv preprint arXiv:1511.02490, 2015
372015
Large language models for compiler optimization
C Cummins, V Seeker, D Grubisic, M Elhoushi, Y Liang, B Roziere, ...
arXiv preprint arXiv:2309.07062, 2023
352023
Masif: Machine learning guided auto-tuning of parallel skeletons
A Collins, C Fensch, H Leather
Proceedings of the 21st international conference on Parallel architectures …, 2012
352012
The system can't perform the operation now. Try again later.
Articles 1–20