Ali Ben Abbes
Citée par
Citée par
Wavelet transform application for/in non-stationary time-series analysis: a review
M Rhif, A Ben Abbes, IR Farah, B Martínez, Y Sang
Applied Sciences 9 (7), 1345, 2019
Comparative study of three satellite image time-series decomposition methods for vegetation change detection
A Ben Abbes, O Bounouh, IR Farah, R de Jong, B Martínez
European Journal of Remote Sensing 51 (1), 607-615, 2018
Fused 3-D spectral-spatial deep neural networks and spectral clustering for hyperspectral image classification
A Sellami, AB Abbes, V Barra, IR Farah
Pattern Recognition Letters 138, 594-600, 2020
Non-stationary and unequally spaced NDVI time series analyses by the LSWAVE software
E Ghaderpour, A Ben Abbes, M Rhif, SD Pagiatakis, IR Farah
International Journal of Remote Sensing 41 (6), 2374-2390, 2020
A review of drought monitoring with big data: Issues, methods, challenges and research directions
H Balti, AB Abbes, N Mellouli, IR Farah, Y Sang, M Lamolle
Ecological Informatics 60, 101136, 2020
An improved trend vegetation analysis for non-stationary NDVI time series based on wavelet transform
M Rhif, A Ben Abbes, B Martinez, IR Farah
Environmental Science and Pollution Research 28 (34), 46603-46613, 2021
Soil moisture estimation from smap observations using long short-term memory (lstm)
AB Abbes, R Magagi, K Goita
IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium …, 2019
Spatio-temporal modeling based on hidden Markov model for object tracking in satellite imagery
H Essid, AB Abbes, IR Farah, V Barra
2012 6th International Conference on Sciences of Electronics, Technologies …, 2012
A deep learning approach for forecasting non-stationary big remote sensing time series
M Rhif, AB Abbes, B Martinez, IR Farah
Arabian Journal of Geosciences 13 (22), 1-11, 2020
Handbook of Research on Geographic Information Systems Applications and Advancements
S Faiz, K Mahmoudi
IGI Global, 2016
A review of drought monitoring using remote sensing and data mining methods
R Inoubli, AB Abbes, IR Farah, V Singh, T Tadesse, MT Sattari
2020 5th International Conference on Advanced Technologies for Signal and …, 2020
Rare events detection in NDVI time-series using Jarque-Bera test
AB Abbes, H Essid, IR Farah, V Barra
2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS …, 2015
Forecasting vegetation indices from spatio-temporal remotely sensed data using deep learning-based approaches: A systematic literature review
A Ferchichi, AB Abbes, V Barra, IR Farah
Ecological Informatics, 101552, 2022
An evaluation of soil moisture retrieval using machine learning methods: Application in arid regions of Tunisia
N Jarray, AB Abbes, IR Farah
2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, 6331 …, 2021
Deep learning models performance for NDVI time series prediction: a case study on north west Tunisia
M Rhif, AB Abbes, B Martínez, IR Farah
2020 Mediterranean and Middle-East Geoscience and Remote Sensing Symposium …, 2020
A Novel Teacher-Student Framework For Soil Moisture Retrieval By Combining Sentinel-1 and Sentinel-2: Application in Arid Regions
N Jarray, A Ben Abbes, IR Farah
IEEE Geoscience and Remote Sensing Letters 19 (1), 1-5, 2022
An open source platform to estimate Soil Moisture using Machine Learning Methods based on Eo-learn library
N Jarray, AB Abbes, M Rhif, F Chouikhi, IR Farah
2021 International Congress of Advanced Technology and Engineering (ICOTEN), 1-5, 2021
An efficient knowledge-based approach for random variation interpretation in NDVI time series
AB Abbes, S Hemissi, IR Farah
Environmental Earth Sciences 77 (22), 1-11, 2018
Unsupervised self-training method based on deep learning for soil moisture estimation using synergy of sentinel-1 and sentinel-2 images
A Ben Abbes, N Jarray
International Journal of Image and Data Fusion, 1-14, 2022
Detection of trend and seasonal changes in non-stationary remote sensing data: Case study of Tunisia vegetation dynamics
M Rhif, AB Abbes, B Martinez, R de Jong, Y Sang, IR Farah
Ecological Informatics, 101596, 2022
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–20