An image is worth 16x16 words: Transformers for image recognition at scale A Dosovitskiy arXiv preprint arXiv:2010.11929, 2020 | 43059 | 2020 |
Parameter-efficient transfer learning for NLP N Houlsby, A Giurgiu, S Jastrzebski, B Morrone, Q De Laroussilhe, ... International conference on machine learning, 2790-2799, 2019 | 3502 | 2019 |
Challenging common assumptions in the unsupervised learning of disentangled representations F Locatello, S Bauer, M Lucic, G Raetsch, S Gelly, B Schölkopf, O Bachem international conference on machine learning, 4114-4124, 2019 | 1544 | 2019 |
Wasserstein auto-encoders I Tolstikhin, O Bousquet, S Gelly, B Schoelkopf arXiv preprint arXiv:1711.01558, 2017 | 1286 | 2017 |
Big transfer (bit): General visual representation learning A Kolesnikov, L Beyer, X Zhai, J Puigcerver, J Yung, S Gelly, N Houlsby Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23 …, 2020 | 1278 | 2020 |
Are gans created equal? a large-scale study M Lucic, K Kurach, M Michalski, S Gelly, O Bousquet Advances in neural information processing systems 31, 2018 | 1216 | 2018 |
Combining online and offline knowledge in UCT S Gelly, D Silver Proceedings of the 24th international conference on Machine learning, 273-280, 2007 | 782 | 2007 |
Assessing generative models via precision and recall MSM Sajjadi, O Bachem, M Lucic, O Bousquet, S Gelly Advances in neural information processing systems 31, 2018 | 590 | 2018 |
On mutual information maximization for representation learning M Tschannen, J Djolonga, PK Rubenstein, S Gelly, M Lucic arXiv preprint arXiv:1907.13625, 2019 | 547 | 2019 |
Modification of UCT with Patterns in Monte-Carlo Go S Gelly, Y Wang, R Munos, O Teytaud INRIA, 2006 | 540 | 2006 |
Monte-Carlo tree search and rapid action value estimation in computer Go S Gelly, D Silver Artificial Intelligence 175 (11), 1856-1875, 2011 | 508 | 2011 |
Towards accurate generative models of video: A new metric & challenges T Unterthiner, S Van Steenkiste, K Kurach, R Marinier, M Michalski, ... arXiv preprint arXiv:1812.01717, 2018 | 443 | 2018 |
Google research football: A novel reinforcement learning environment K Kurach, A Raichuk, P Stańczyk, M Zając, O Bachem, L Espeholt, ... Proceedings of the AAAI conference on artificial intelligence 34 (04), 4501-4510, 2020 | 377 | 2020 |
Episodic curiosity through reachability N Savinov, A Raichuk, R Marinier, D Vincent, M Pollefeys, T Lillicrap, ... arXiv preprint arXiv:1810.02274, 2018 | 330 | 2018 |
The grand challenge of computer Go: Monte Carlo tree search and extensions S Gelly, L Kocsis, M Schoenauer, M Sebag, D Silver, C Szepesvári, ... Communications of the ACM 55 (3), 106-113, 2012 | 324 | 2012 |
A large-scale study of representation learning with the visual task adaptation benchmark X Zhai, J Puigcerver, A Kolesnikov, P Ruyssen, C Riquelme, M Lucic, ... arXiv preprint arXiv:1910.04867, 2019 | 304 | 2019 |
Exploration exploitation in go: UCT for Monte-Carlo go S Gelly, Y Wang NIPS: Neural Information Processing Systems Conference On-line trading of …, 2006 | 301 | 2006 |
Adagan: Boosting generative models IO Tolstikhin, S Gelly, O Bousquet, CJ Simon-Gabriel, B Schölkopf Advances in neural information processing systems 30, 2017 | 281 | 2017 |
What matters in on-policy reinforcement learning? a large-scale empirical study M Andrychowicz, A Raichuk, P Stańczyk, M Orsini, S Girgin, R Marinier, ... arXiv preprint arXiv:2006.05990, 2020 | 221 | 2020 |
A large-scale study on regularization and normalization in GANs K Kurach, M Lučić, X Zhai, M Michalski, S Gelly International conference on machine learning, 3581-3590, 2019 | 205 | 2019 |