The strong gravitational lens finding challenge RB Metcalf, M Meneghetti, C Avestruz, F Bellagamba, CR Bom, E Bertin, ... Astronomy & Astrophysics 625, A119, 2019 | 137 | 2019 |
Improving hyperspectral image classification using spatial preprocessing S Velasco-Forero, V Manian IEEE Geoscience and Remote Sensing Letters 6 (2), 297-301, 2009 | 120 | 2009 |
Manipulating the alpha level cannot cure significance testing D Trafimow, V Amrhein, CN Areshenkoff, CJ Barrera-Causil, EJ Beh, ... Frontiers in psychology 9, 699, 2018 | 117 | 2018 |
Classification of hyperspectral images by tensor modeling and additive morphological decomposition S Velasco-Forero, J Angulo Pattern Recognition 46 (2), 566-577, 2013 | 113 | 2013 |
Supervised ordering in R^p: Application to morphological processing of hyperspectral images S Velasco-Forero, J Angulo Image Processing, IEEE Transactions on 20 (11), 3301-3308, 2011 | 104 | 2011 |
Deep learning for galaxy surface brightness profile fitting D Tuccillo, M Huertas-Company, E Decencière, S Velasco-Forero, ... Monthly Notices of the Royal Astronomical Society 475 (1), 894-909, 2018 | 91 | 2018 |
Random projection depth for multivariate mathematical morphology S Velasco-Forero, J Angulo IEEE Journal of Selected Topics in Signal Processing 6 (7), 753-763, 2012 | 72 | 2012 |
On power Jaccard losses for semantic segmentation D Duque-Arias, S Velasco-Forero, JE Deschaud, F Goulette, A Serna, ... VISAPP 2021: 16th International conference on computer vision theory and …, 2021 | 53 | 2021 |
On‐the‐Go Grapevine Yield Estimation Using Image Analysis and Boolean Model B Millan, S Velasco-Forero, A Aquino, J Tardaguila Journal of Sensors 2018 (1), 9634752, 2018 | 49 | 2018 |
A new color augmentation method for deep learning segmentation of histological images Y Xiao, E Decencière, S Velasco-Forero, H Burdin, T Bornschlögl, ... 2019 IEEE 16th international symposium on biomedical imaging (ISBI 2019 …, 2019 | 45 | 2019 |
Paris-CARLA-3D: A real and synthetic outdoor point cloud dataset for challenging tasks in 3D mapping JE Deschaud, D Duque, JP Richa, S Velasco-Forero, B Marcotegui, ... Remote Sensing 13 (22), 4713, 2021 | 44 | 2021 |
Retrieval and classification methods for textured 3D models: a comparative study S Biasotti, A Cerri, M Aono, AB Hamza, V Garro, A Giachetti, D Giorgi, ... The Visual Computer 32, 217-241, 2016 | 43 | 2016 |
SHREC’14 track: Retrieval and classification on textured 3D models S Biasotti, A Cerri, M Abdelrahman, M Aono, AB Hamza, M El-Melegy, ... Proceedings of the Eurographics workshop on 3d object retrieval, 111-120, 2014 | 43 | 2014 |
Nnakf: A neural network adapted kalman filter for target tracking S Jouaber, S Bonnabel, S Velasco-Forero, M Pilte ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and …, 2021 | 38 | 2021 |
Max-plus operators applied to filter selection and model pruning in neural networks Y Zhang, S Blusseau, S Velasco-Forero, I Bloch, J Angulo Mathematical Morphology and Its Applications to Signal and Image Processing …, 2019 | 36 | 2019 |
SHREC'18 track: Recognition of geometric patterns over 3D models S Biasotti, EM Thompson, L Barthe, S Berretti, A Giachetti, T Lejemble, ... Eurographics Workshop on 3D Object Retrieval (3DOR 2018), 2018 | 35 | 2018 |
Mathematical morphology for vector images using statistical depth S Velasco-Forero, J Angulo Mathematical Morphology and Its Applications to Image and Signal Processing …, 2011 | 34 | 2011 |
Local mutual information for dissimilarity-based image segmentation L Gueguen, S Velasco-Forero, P Soille Journal of mathematical imaging and vision 48 (3), 625-644, 2014 | 32 | 2014 |
On nonlocal mathematical morphology S Velasco-Forero, J Angulo International Symposium on Mathematical Morphology and Its Applications to …, 2013 | 31 | 2013 |
SHREC'13 Track: Retrieval on Textured 3D Models. A Cerri, S Biasotti, M Abdelrahman, J Angulo, K Berger, L Chevallier, ... 3DOR@ Eurographics, 73-80, 2013 | 29 | 2013 |