Marco Cuturi
Marco Cuturi
Google Brain / CREST-ENSAE.
Adresse e-mail validée de google.com - Page d'accueil
Titre
Citée par
Citée par
Année
Sinkhorn Distances: Lightspeed Computation of Optimal Transport
M Cuturi
Proceedings of the 26th International Conference on Advances in Neural …, 2013
15612013
Computational Optimal Transport
G Peyré, M Cuturi
Foundations and Trends in Machine Learning 11 (5-6), pp. 355-607, 2019
10542019
Iterative Bregman projections for regularized transportation problems
JD Benamou, G Carlier, M Cuturi, L Nenna, G Peyré
SIAM Journal on Scientific Computing 37 (2), A1111-A1138, 2015
5232015
Fast computation of Wasserstein barycenters
M Cuturi, A Doucet
Proceedings of the International Conference on Machine Learning 2014, JMLR …, 2014
4842014
Convolutional Wasserstein Distances: Efficient Optimal Transportation on Geometric Domains
J Solomon, F de Goes, G Peyré, M Cuturi, A Butscher, A Nguyen, T Du, ...
ACM Transactions on Graphics (TOG) SIGGRAPH, 2015, 2015
4352015
Learning Generative Models with Sinkhorn Divergences
A Genevay, G Peyré, M Cuturi
Proceedings of the Twenty-First International Conference on Artifical …, 2017
342*2017
Fast global alignment kernels
M Cuturi
International Conference in Machine Learning 2011, 2011
3052011
Stochastic optimization for large-scale optimal transport
A Genevay, M Cuturi, G Peyré, F Bach
arXiv preprint arXiv:1605.08527, 2016
268*2016
A kernel for time series based on global alignments
M Cuturi, JP Vert, O Birkenes, T Matsui
Acoustics, Speech and Signal Processing, 2007. ICASSP 2007. IEEE …, 2007
2462007
Soft-DTW: a differentiable loss function for time-series
M Cuturi, M Blondel
Proceedings of the 34th International Conference on Machine Learning, PMLR …, 2017
2162017
On wasserstein two-sample testing and related families of nonparametric tests
A Ramdas, NG Trillos, M Cuturi
Entropy 19 (2), 47, 2017
1622017
A smoothed dual approach for variational wasserstein problems
M Cuturi, G Peyré
SIAM J. Imaging Sciences 9 (1), 320–343, 2016
1442016
Sliced Wasserstein kernel for persistence diagrams
M Carriere, M Cuturi, S Oudot
International conference on machine learning, 664-673, 2017
1422017
Gromov-Wasserstein averaging of kernel and distance matrices
G Peyré, M Cuturi, J Solomon
International Conference on Machine Learning, 2664-2672, 2016
1382016
Fast dictionary learning with a smoothed Wasserstein loss
A Rolet, M Cuturi, G Peyré
Artificial Intelligence and Statistics, 630-638, 2016
1192016
Semigroup kernels on measures.
M Cuturi, K Fukumizu, JP Vert
Journal of Machine Learning Research 6 (7), 2005
1072005
Wasserstein Barycentric Coordinates: Histogram Regression Using Optimal Transport
N Bonneel, G Peyré, M Cuturi
ACM Transactions on Graphics 35 (4), 2016
1062016
Sample complexity of sinkhorn divergences
A Genevay, L Chizat, F Bach, M Cuturi, G Peyré
The 22nd International Conference on Artificial Intelligence and Statistics …, 2019
1052019
Wasserstein training of restricted Boltzmann machines
G Montavon, KR Müller, M Cuturi
Advances in Neural Information Processing Systems 29, 3718-3726, 2016
100*2016
Wasserstein dictionary learning: Optimal transport-based unsupervised nonlinear dictionary learning
MA Schmitz, M Heitz, N Bonneel, F Ngole, D Coeurjolly, M Cuturi, G Peyré, ...
SIAM Journal on Imaging Sciences 11 (1), 643-678, 2018
882018
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–20