Máté Csákvári
Máté Csákvári
Adresse e-mail validée de caesar.elte.hu
Titre
Citée par
Citée par
Année
Towards reasoning based representations: Deep Consistence Seeking Machine
A Lőrincz, M Csákvári, Á Fóthi, ZÁ Milacski, A Sárkány, Z Tősér
Cognitive Systems Research 47, 92-108, 2018
82018
Cognitive Deep Machine Can Train Itself
A Lőrincz, M Csákvári, Á Fóthi, ZÁ Milacski, A Sárkány, Z Tősér
arXiv preprint arXiv:1612.00745, 2016
22016
Partitioning the Right Ventricle into 15 Segments and Decomposing its Motion using 3D Echocardiography-based Models: The Updated ReVISION Method
M Tokodi, L Staub, Á Budai, BK Lakatos, M Csákvári, FI Suhai, L Szabó, ...
Frontiers in Cardiovascular Medicine 8, 24, 0
1
Exploring sex-specific patterns of mortality predictors among patients undergoing cardiac resynchronization therapy: a machine learning approach
M Tokodi, A Behon, ED Merkel, A Kovacs, Z Toser, A Sarkany, M Csakvari, ...
European Heart Journal 41 (Supplement_2), ehaa946. 0996, 2020
2020
ASSOCIATION BETWEEN BIVENTRICULAR MECHANICAL PATTERN AND EXERCISE CAPACITY IN ATHLETES: MACHINE LEARNING BASED PREDICTION OF PEAK OXYGEN UPTAKE
M Tokodi, BK Lakatos, Z Tősér, M Csákvári, A Fábián, M Babity, C Bognár, ...
Journal of the American College of Cardiology 75 (11_Supplement_1), 1562-1562, 2020
2020
Combining Common Sense Rules and Machine Learning to Understand Object Manipulation
A Sárkány, M Csákvári, M Olasz
Acta Cybernetica 24 (1), 157-172, 2019
2019
Towards the understanding of object manipulations by means of combining common sense rules and deep networks
M Csákvári, A Sárkány
THE 11TH CONFERENCE OF PHD STUDENTS IN COMPUTER SCIENCE, 118, 2018
2018
Le systčme ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–7