Tom Rainforth
Title
Cited by
Cited by
Year
Tighter Variational Bounds are Not Necessarily Better
T Rainforth, AR Kosiorek, TA Le, CJ Maddison, M Igl, F Wood, YW Teh
Proceedings of the 35rd International Conference on Machine Learning 80 …, 2018
852018
Auto-Encoding Sequential Monte Carlo
TA Le, M Igl, T Rainforth, T Jin, F Wood
International Conference on Learning Representations, 2018
752018
Canonical correlation forests
T Rainforth, F Wood
arXiv preprint arXiv:1507.05444, 2015
512015
On Nesting Monte Carlo Estimators
T Rainforth, R Cornish, H Yang, A Warrington, F Wood
Proceedings of the 35th International Conference on Machine Learning 80 …, 2018
45*2018
Disentangling Disentanglement in Variational Autoencoders
E Mathieu, T Rainforth, N Siddharth, YW Teh
International Conference on Machine Learning, 4402-4412, 2019
392019
Bayesian optimization for probabilistic programs
T Rainforth, TA Le, JW van de Meent, MA Osborne, F Wood
Advances in Neural Information Processing Systems, 280-288, 2016
292016
Interacting Particle Markov Chain Monte Carlo
T Rainforth, CA Naesseth, F Lindsten, B Paige, JW van de Meent, ...
Proceedings of the 33rd International Conference on Machine Learning 48 …, 2016
252016
Automating inference, learning, and design using probabilistic programming
TWG Rainforth
University of Oxford, 2017
222017
On the fairness of disentangled representations
F Locatello, G Abbati, T Rainforth, S Bauer, B Schölkopf, O Bachem
Advances in Neural Information Processing Systems, 14611-14624, 2019
172019
Faithful Inversion of Generative Models for Effective Amortized Inference
S Webb, A Golinski, R Zinkov, S Narayanaswamy, T Rainforth, YW Teh, ...
Advances in Neural Information Processing Systems, 3073-3083, 2018
172018
LF-PPL: A Low-Level First Order Probabilistic Programming Language for Non-Differentiable Models
Y Zhou, BJ Gram-Hansen, T Kohn, T Rainforth, H Yang, F Wood
The 22nd International Conference on Artificial Intelligence and Statistics …, 2019
13*2019
A Statistical Approach to Assessing Neural Network Robustness
S Webb, T Rainforth, YW Teh, MP Kumar
International Conference on Learning Representations, 2019
12*2019
Inference Trees: Adaptive Inference with Exploration
T Rainforth, Y Zhou, X Lu, YW Teh, F Wood, H Yang, JW van de Meent
arXiv preprint arXiv:1806.09550, 2018
112018
Nesting Probabilistic Programs
T Rainforth
Uncertainty in Artificial Intelligence (UAI), 2018
112018
Variational Bayesian optimal experimental design
A Foster, M Jankowiak, E Bingham, P Horsfall, YW Teh, T Rainforth, ...
Advances in Neural Information Processing Systems, 14036-14047, 2019
7*2019
On exploration, exploitation and learning in adaptive importance sampling
X Lu, T Rainforth, Y Zhou, JW van de Meent, YW Teh
arXiv preprint arXiv:1810.13296, 2018
52018
The DARC Toolbox: automated, flexible, and efficient delayed and risky choice experiments using Bayesian adaptive design
BT Vincent, T Rainforth
PsyArXiv. October 20, 2017
52017
Probabilistic structure discovery in time series data
D Janz, B Paige, T Rainforth, JW van de Meent, F Wood
arXiv preprint arXiv:1611.06863, 2016
42016
Hijacking malaria simulators with probabilistic programming
B Gram-Hansen, CS de Witt, T Rainforth, PHS Torr, YW Teh, AG Baydin
arXiv preprint arXiv:1905.12432, 2019
32019
A note on blind contact tracing at scale with applications to the COVID-19 pandemic
JK Fitzsimons, A Mantri, R Pisarczyk, T Rainforth, Z Zhao
arXiv preprint arXiv:2004.05116, 2020
22020
The system can't perform the operation now. Try again later.
Articles 1–20