Loic Le Gratiet
Loic Le Gratiet
Adresse e-mail validée de edf.fr
Titre
Citée par
Citée par
Année
Recursive co-kriging model for design of computer experiments with multiple levels of fidelity
L Le Gratiet, J Garnier
International Journal for Uncertainty Quantification 4 (5), 2014
1692014
Metamodel-based sensitivity analysis: polynomial chaos expansions and Gaussian processes
LL Gratiet, S Marelli, B Sudret
arXiv preprint arXiv:1606.04273, 2016
1322016
Multi-fidelity Gaussian process regression for computer experiments
L Le Gratiet
Université Paris-Diderot-Paris VII, 2013
1182013
Cokriging-based sequential design strategies using fast cross-validation techniques for multi-fidelity computer codes
L Le Gratiet, C Cannamela
Technometrics 57 (3), 418-427, 2015
912015
Bayesian analysis of hierarchical multifidelity codes
L Le Gratiet
SIAM/ASA Journal on Uncertainty Quantification 1 (1), 244-269, 2013
832013
A Bayesian approach for global sensitivity analysis of (multifidelity) computer codes
L Le Gratiet, C Cannamela, B Iooss
SIAM/ASA Journal on Uncertainty Quantification 2 (1), 336-363, 2014
802014
Type-III and tilted Dirac cones emerging from flat bands in photonic orbital graphene
M Milićević, G Montambaux, T Ozawa, O Jamadi, B Real, I Sagnes, ...
Physical Review X 9 (3), 031010, 2019
542019
Sensitivity: global sensitivity analysis of model outputs
G Pujol, B Iooss, A Janon, K Boumhaout, S Da Veiga, J Fruth, L Gilquin, ...
R package version 1 (0), 2017
422017
Package ‘sensitivity’
G Pujol, B Iooss, MB Iooss, S DiceDesign
CRAN, 2015
382015
Sensitivity: global sensitivity analysis of model outputs
B Iooss, A Janon, G Pujol, B Broto, K Boumhaout, S Da Veiga
R package version 1 (2), 2018
372018
Stochastic simulators based optimization by Gaussian process metamodels–application to maintenance investments planning issues
T Browne, B Iooss, LL Gratiet, J Lonchampt, E Remy
Quality and Reliability Engineering International 32 (6), 2067-2080, 2016
252016
Model assisted probability of detection curves: New statistical tools and progressive methodology
L Le Gratiet, B Iooss, G Blatman, T Browne, S Cordeiro, B Goursaud
Journal of Nondestructive Evaluation 36 (1), 1-12, 2017
232017
Uncertainty and sensitivity analysis of functional risk curves based on Gaussian processes
B Iooss, L Le Gratiet
Reliability Engineering & System Safety 187, 58-66, 2019
192019
Asymptotic analysis of the learning curve for Gaussian process regression
L Le Gratiet, J Garnier
Machine Learning 98 (3), 407-433, 2015
172015
Estimate of quantile-oriented sensitivity indices
T Browne, JC Fort, B Iooss, L Le Gratiet
162017
ANOVA decomposition of conditional Gaussian processes for sensitivity analysis with dependent inputs
G Chastaing, L Le Gratiet
Journal of Statistical Computation and Simulation 85 (11), 2164-2186, 2015
132015
sensitivity: Sensitivity Analysis, 2014
G Pujol, B Iooss, A Janon, P Lemaitre, L Gilquin, LL Gratiet, T Touati, ...
URL http://CRAN. R-project. org/package= sensitivity. R package version 1, 1, 0
10
Semi-Dirac transport and anisotropic localization in polariton honeycomb lattices
B Real, O Jamadi, M Milićević, N Pernet, P St-Jean, T Ozawa, ...
Physical Review Letters 125 (18), 186601, 2020
62020
Multi-fidelity Gaussian process regression for computer experiments (Doctoral dissertation, Université Paris-Diderot-Paris VII)
L Le Gratiet
McFarland, J., Mahadevan, S., Romero, V., & Swiler, L.(2008). Calibration …, 2013
62013
Lasing in optically induced gap states in photonic graphene
M Milicevic, O Bleu, DD Solnyshkov, I Sagnes, A Lemaitre, LL Gratiet, ...
SciPost Phys 5, 64, 2018
52018
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–20