Learning video object segmentation with visual memory P Tokmakov, K Alahari, C Schmid Proceedings of the IEEE International Conference on Computer Vision, 4481-4490, 2017 | 285 | 2017 |
Learning motion patterns in videos P Tokmakov, K Alahari, C Schmid Proceedings of the IEEE conference on computer vision and pattern …, 2017 | 249 | 2017 |
Learning compositional representations for few-shot recognition P Tokmakov, YX Wang, M Hebert Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2019 | 80 | 2019 |
One click mining: Interactive local pattern discovery through implicit preference and performance learning M Boley, M Mampaey, B Kang, P Tokmakov, S Wrobel Proceedings of the ACM SIGKDD workshop on interactive data exploration and …, 2013 | 71 | 2013 |
Weakly-supervised semantic segmentation using motion cues P Tokmakov, K Alahari, C Schmid European Conference on Computer Vision, 388-404, 2016 | 68* | 2016 |
Learning to segment moving objects P Tokmakov, C Schmid, K Alahari International Journal of Computer Vision 127 (3), 282-301, 2019 | 67 | 2019 |
A structured model for action detection Y Zhang, P Tokmakov, M Hebert, C Schmid Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2019 | 62 | 2019 |
Towards segmenting anything that moves A Dave, P Tokmakov, D Ramanan Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2019 | 46* | 2019 |
Tao: A large-scale benchmark for tracking any object A Dave, T Khurana, P Tokmakov, C Schmid, D Ramanan European conference on computer vision, 436-454, 2020 | 43 | 2020 |
Relational linear programming K Kersting, M Mladenov, P Tokmakov Artificial Intelligence 244, 188-216, 2017 | 26* | 2017 |
Learning to track with object permanence P Tokmakov, J Li, W Burgard, A Gaidon Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2021 | 23 | 2021 |
Unsupervised learning of video representations via dense trajectory clustering P Tokmakov, M Hebert, C Schmid European Conference on Computer Vision, 404-421, 2020 | 13 | 2020 |
A study on action detection in the wild Y Zhang, P Tokmakov, M Hebert, C Schmid arXiv preprint arXiv:1904.12993, 2019 | 10 | 2019 |
Heterogeneous-agent trajectory forecasting incorporating class uncertainty B Ivanovic, KH Lee, P Tokmakov, B Wulfe, R McAllister, A Gaidon, ... arXiv preprint arXiv:2104.12446, 2021 | 7 | 2021 |
Learning to track any object A Dave, P Tokmakov, C Schmid, D Ramanan arXiv preprint arXiv:1910.11844, 2019 | 5 | 2019 |
Towards latent attribute discovery from triplet similarities I Nigam, P Tokmakov, D Ramanan Proceedings of the IEEE/CVF International Conference on Computer Vision, 402-410, 2019 | 5 | 2019 |
Discovering Objects that Can Move Z Bao, P Tokmakov, A Jabri, YX Wang, A Gaidon, M Hebert Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2022 | 2 | 2022 |
Systems and methods for trajectory forecasting according to semantic category uncertainty B Ivanovic, KH Lee, J Li, AD Gaidon, P Tokmakov US Patent App. 17/112,292, 2022 | | 2022 |
Object Permanence Emerges in a Random Walk along Memory P Tokmakov, A Jabri, J Li, A Gaidon arXiv preprint arXiv:2204.01784, 2022 | | 2022 |
Unlocking the Full Potential of Small Data with Diverse Supervision Z Pang, Z Hu, P Tokmakov, YX Wang, M Hebert Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2021 | | 2021 |