Follow
Nicolas Keriven
Nicolas Keriven
CNRS, IRISA
Verified email at cnrs.fr - Homepage
Title
Cited by
Cited by
Year
Universal invariant and equivariant graph neural networks
N Keriven, G Peyré
Advances in Neural Information Processing Systems 32, 2019
3062019
Sketching for large-scale learning of mixture models
N Keriven, A Bourrier, R Gribonval, P Pérez
Information and Inference: A Journal of the IMA 7 (3), 447-508, 2018
1002018
Convergence and Stability of Graph Convolutional Networks on Large Random Graphs
N Keriven, A Bietti, S Vaiter
Advances in Neural Information Processing Systems 33, 21512--21523, 2020
922020
Not too little, not too much: a theoretical analysis of graph (over) smoothing
N Keriven
Advances in Neural Information Processing Systems (NeurIPS), 2022
892022
Compressive statistical learning with random feature moments
R Gribonval, G Blanchard, N Keriven, Y Traonmilin
Mathematical Statistics and Learning 3 (2), 113-164, 2021
742021
Compressive K-means
N Keriven, N Tremblay, Y Traonmilin, R Gribonval
2017 IEEE International Conference on Acoustics, Speech and Signal …, 2017
732017
NEWMA: a new method for scalable model-free online change-point detection
N Keriven, D Garreau, I Poli
IEEE Transactions on Signal Processing 68, 3515-3528, 2020
482020
The geometry of off-the-grid compressed sensing
C Poon, N Keriven, G Peyré
Foundations of Computational Mathematics 23 (1), 241-327, 2023
39*2023
On the Universality of Graph Neural Networks on Large Random Graphs
N Keriven, A Bietti, S Vaiter
Advances in Neural Information Processing Systems 34, 2021
292021
Support localization and the fisher metric for off-the-grid sparse regularization
C Poon, N Keriven, G Peyré
The 22nd International Conference on Artificial Intelligence and Statistics …, 2019
262019
Non-negative group sparsity with subspace note modelling for polyphonic transcription
K O’Hanlon, H Nagano, N Keriven, MD Plumbley
IEEE/ACM Transactions on Audio, Speech, and Language Processing 24 (3), 530-542, 2016
252016
Sketching data sets for large-scale learning: Keeping only what you need
R Gribonval, A Chatalic, N Keriven, V Schellekens, L Jacques, P Schniter
IEEE Signal Processing Magazine 38 (5), 12-36, 2021
222021
Large-scale high-dimensional clustering with fast sketching
A Chatalic, R Gribonval, N Keriven
2018 IEEE International Conference on Acoustics, Speech and Signal …, 2018
222018
Statistical learning guarantees for compressive clustering and compressive mixture modeling
R Gribonval, G Blanchard, N Keriven, Y Traonmilin
arXiv preprint arXiv:2004.08085, 2020
212020
Sparse and smooth: improved guarantees for spectral clustering in the dynamic stochastic block model
N Keriven, S Vaiter
Electronic Journal of Statistics 16 (1), 1330 - 1366, 2022
152022
Blind source separation using mixtures of alpha-stable distributions
N Keriven, A Deleforge, A Liutkus
2018 IEEE International Conference on Acoustics, Speech and Signal …, 2018
142018
Sketching datasets for large-scale learning (long version)
R Gribonval, A Chatalic, N Keriven, V Schellekens, L Jacques, P Schniter
arXiv preprint arXiv:2008.01839, 2020
122020
What functions can Graph Neural Networks compute on random graphs? The role of Positional Encoding
N Keriven, S Vaiter
Advances in Neural Information Processing Systems 36, 11823-11849, 2023
112023
Instance optimal decoding and the restricted isometry property
N Keriven, R Gribonval
Journal of Physics: Conference Series 1131 (1), 012002, 2018
112018
Structured sparsity using backwards elimination for automatic music transcription
N Keriven, K O'Hanlon, MD Plumbley
2013 IEEE International Workshop on Machine Learning for Signal Processing …, 2013
82013
The system can't perform the operation now. Try again later.
Articles 1–20