Nicolas Audebert
Nicolas Audebert
Computer vision and machine learning researcher
Verified email at cnam.fr - Homepage
Title
Cited by
Cited by
Year
Semantic Segmentation of Earth Observation Data Using Multimodal and Multi-scale Deep Networks
N Audebert, B Le Saux, S Lefèvre
Asian Conference on Computer Vision, 180-196, 2016
2622016
SnapNet: 3D point cloud semantic labeling with 2D deep segmentation networks
A Boulch, J Guerry, B Le Saux, N Audebert
Computers & Graphics 71, 189-198, 2018
231*2018
Beyond RGB: Very high resolution urban remote sensing with multimodal deep networks
N Audebert, B Le Saux, S Lefèvre
ISPRS Journal of Photogrammetry and Remote Sensing 140, 20-32, 2018
2292018
Segment-before-detect: Vehicle detection and classification through semantic segmentation of aerial images
N Audebert, B Le Saux, S Lefèvre
Remote Sensing 9 (4), 368, 2017
1622017
Deep learning for classification of hyperspectral data: A comparative review
N Audebert, B Le Saux, S Lefèvre
IEEE geoscience and remote sensing magazine 7 (2), 159-173, 2019
1002019
Joint learning from earth observation and openstreetmap data to get faster better semantic maps
N Audebert, B Le Saux, S Lefèvre
Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2017
742017
Large-scale semantic classification: outcome of the first year of inria aerial image labeling benchmark
B Huang, K Lu, N Audeberr, A Khalel, Y Tarabalka, J Malof, A Boulch, ...
IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium …, 2018
612018
How useful is region-based classification of remote sensing images in a deep learning framework?
N Audebert, B Le Saux, S Lefevre
2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS …, 2016
312016
Fusion of heterogeneous data in convolutional networks for urban semantic labeling
N Audebert, B Le Saux, S Lefèvrey
2017 Joint Urban Remote Sensing Event (JURSE), 1-4, 2017
282017
Multimodal deep networks for text and image-based document classification
N Audebert, C Herold, K Slimani, C Vidal
Joint European Conference on Machine Learning and Knowledge Discovery in …, 2019
242019
Deep learning for urban remote sensing
N Audebert, A Boulch, H Randrianarivo, B Le Saux, M Ferecatu, S Lefevre, ...
2017 Joint Urban Remote Sensing Event (JURSE), 1-4, 2017
22*2017
SHREC'17: Deformable shape retrieval with missing parts
E Rodolà, L Cosmo, O Litany, MM Bronstein, AM Bronstein, N Audebert, ...
10th Eurographics Workshop on 3D Object Retrieval, 3DOR 2017, 85-94, 2017
202017
Generative adversarial networks for realistic synthesis of hyperspectral samples
N Audebert, B Le Saux, S Lefèvre
IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium …, 2018
192018
Deep learning for semantic segmentation of remote sensing images with rich spectral content
AB Hamida, A Benoit, P Lambert, L Klein, CB Amar, N Audebert, ...
2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS …, 2017
182017
Shrec’17 track: point-cloud shape retrieval of non-rigid toys
FA Limberger, RC Wilson, M Aono, N Audebert, A Boulch, B Bustos, ...
10th Eurographics workshop on 3D Object retrieval, 1-11, 2017
13*2017
Distance transform regression for spatially-aware deep semantic segmentation
N Audebert, A Boulch, B Le Saux, S Lefèvre
Computer Vision and Image Understanding 189, 102809, 2019
112019
Object detection in remote sensing images with center only
A Chan-Hon-Tong, N Audebert
IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium …, 2018
72018
What Data are needed for Semantic Segmentation in Earth Observation?
J Castillo-Navarro, N Audebert, A Boulch, B Le Saux, S Lefèvre
2019 Joint Urban Remote Sensing Event (JURSE), 1-4, 2019
2*2019
Classification de données massives de télédétection
N Audebert
Université Bretagne Sud, 2018
22018
Semi-Supervised Semantic Segmentation in Earth Observation: The MiniFrance suite, dataset analysis and multi-task network study
J Castillo-Navarro, B Le Saux, A Boulch, N Audebert, S Lefèvre
Machine Learning, 1-36, 2021
12021
The system can't perform the operation now. Try again later.
Articles 1–20