A velocity-pressure streamline diffusion finite element method for the incompressible Navier-Stokes equations P Hansbo, A Szepessy Computer Methods in Applied Mechanics and Engineering 84 (2), 175-192, 1990 | 285 | 1990 |

On the convergence of shock-capturing streamline diffusion finite element methods for hyperbolic conservation laws C Johnson, A Szepessy, P Hansbo Mathematics of computation 54 (189), 107-129, 1990 | 270 | 1990 |

Nonlinear stability of viscous shock waves A Szepessy, Z Xin Arch. Rational Mech. Anal, 1993 | 243 | 1993 |

On the convergence of a finite element method for a nonlinear hyperbolic conservation law C Johnson, A Szepessy Mathematics of Computation 49 (180), 427-444, 1987 | 192 | 1987 |

Convergence of the discontinuous Galerkin finite element method for hyperbolic conservation laws J Jaffre, C Johnson, A Szepessy Mathematical Models and Methods in Applied Sciences 5 (03), 367-386, 1995 | 176 | 1995 |

Multidimensional stability of planar viscous shock waves K Zumbrun Advances in the theory of shock waves, 307-516, 2001 | 170 | 2001 |

Adaptive finite element methods for conservation laws based on a posteriori error estimates C Johnson, A Szepessy Communications on Pure and Applied Mathematics 48 (3), 199-234, 1995 | 159 | 1995 |

Convergence of a shock-capturing streamline diffusion finite element method for a scalar conservation law in two space dimensions A Szepessy Mathematics of computation 53 (188), 527-545, 1989 | 136 | 1989 |

An existence result for scalar conservation laws using measure valued solutions. A Szepessy Communications in Partial Differential Equations 14 (10), 1329-1350, 1989 | 110 | 1989 |

Stability of rarefaction waves in viscous media A Szepessy, K Zumbrun Archive for rational mechanics and analysis 133 (3), 249-298, 1996 | 107 | 1996 |

Adaptive weak approximation of stochastic differential equations A Szepessy, R Tempone, GE Zouraris Communications on Pure and Applied Mathematics: A Journal Issued by the …, 2001 | 89 | 2001 |

Measure-valued solutions of scalar conservation laws with boundary conditions A Szepessy Archive for Rational Mechanics and Analysis 107 (2), 181-193, 1989 | 89 | 1989 |

Convergence of a streamline diffusion finite element method for scalar conservation laws with boundary conditions A Szepessy ESAIM: Mathematical Modelling and Numerical Analysis 25 (6), 749-782, 1991 | 80 | 1991 |

A remark on the stability of viscous shock waves J Goodman, A Szepessy, K Zumbrun SIAM Journal on Mathematical Analysis 25 (6), 1463-1467, 1994 | 77 | 1994 |

Adaptive multilevel monte carlo simulation H Hoel, E Von Schwerin, A Szepessy, R Tempone Numerical Analysis of Multiscale Computations, 217-234, 2012 | 57 | 2012 |

Adaptive weak approximation of diffusions with jumps E Mordecki, A Szepessy, R Tempone, GE Zouraris SIAM Journal on Numerical Analysis 46 (4), 1732-1768, 2008 | 43 | 2008 |

Convergence rates for adaptive weak approximation of stochastic differential equations KS Moon, A Szepessy, R Tempone, GE Zouraris Stochastic analysis and applications 23 (3), 511-558, 2005 | 41 | 2005 |

Implementation and analysis of an adaptive multilevel Monte Carlo algorithm H Hoel, E Von Schwerin, A Szepessy, R Tempone Monte Carlo Methods and Applications 20 (1), 1-41, 2014 | 38 | 2014 |

Convergence of the streamline diffusion finite element method for conservation laws A Szepessy Department of Mathematics, Chalmers tekniska högskola, 1989 | 37 | 1989 |

On the convergence of streamline diffusion finite element methods for hyperbolic conservation laws C Johnson, A Szepessy IN: Numerical methods for compressible flows-Finite difference 7, 75-91, 1986 | 30 | 1986 |