Jack Valmadre
Jack Valmadre
Research scientist, Google Research
Adresse e-mail validée de google.com - Page d'accueil
Titre
Citée par
Citée par
Année
Fully-convolutional siamese networks for object tracking
L Bertinetto, J Valmadre, JF Henriques, A Vedaldi, PHS Torr
European conference on computer vision, 850-865, 2016
23852016
Staple: Complementary learners for real-time tracking
L Bertinetto, J Valmadre, S Golodetz, O Miksik, PHS Torr
Proceedings of the IEEE conference on computer vision and pattern …, 2016
14342016
End-to-end representation learning for correlation filter based tracking
J Valmadre, L Bertinetto, J Henriques, A Vedaldi, PHS Torr
Proceedings of the IEEE conference on computer vision and pattern …, 2017
11302017
Learning feed-forward one-shot learners
L Bertinetto, JF Henriques, J Valmadre, PHS Torr, A Vedaldi
Advances in Neural Information Processing Systems, 523-531, 2016
3452016
Long-term tracking in the wild: A benchmark
J Valmadre, L Bertinetto, JF Henriques, R Tao, A Vedaldi, ...
Proceedings of the European conference on computer vision (ECCV), 670-685, 2018
932018
Dense semantic correspondence where every pixel is a classifier
H Bristow, J Valmadre, S Lucey
Proceedings of the IEEE International Conference on Computer Vision, 4024-4031, 2015
562015
General trajectory prior for non-rigid reconstruction
J Valmadre, S Lucey
Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on …, 2012
562012
Deterministic 3D human pose estimation using rigid structure
J Valmadre, S Lucey
Computer Vision–ECCV 2010, 467-480, 2010
532010
Separable spatiotemporal priors for convex reconstruction of time-varying 3D point clouds
T Simon, J Valmadre, I Matthews, Y Sheikh
European Conference on Computer Vision, 204-219, 2014
342014
Devon: Deformable volume network for learning optical flow
Y Lu, J Valmadre, H Wang, J Kannala, M Harandi, P Torr
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer …, 2020
222020
Efficient articulated trajectory reconstruction using dynamic programming and filters
J Valmadre, Y Zhu, S Sridharan, S Lucey
192012
Kronecker-Markov prior for dynamic 3D reconstruction
T Simon, J Valmadre, I Matthews, Y Sheikh
IEEE transactions on pattern analysis and machine intelligence 39 (11), 2201 …, 2016
152016
Learning detectors quickly with stationary statistics
J Valmadre, S Sridharan, S Lucey
Asian Conference on Computer Vision, 99-114, 2014
14*2014
The importance of estimating object extent when tracking with correlation filters
L Bertinetto, J Valmadre, S Golodetz, O Miksik, PHS Torr
Report for the Visual Object Tracking Workshop, 2015
72015
Closed-form solutions for low-rank non-rigid reconstruction
J Valmadre, S Sridharan, S Denman, C Fookes, S Lucey
2015 International Conference on Digital Image Computing: Techniques and …, 2015
62015
Camera-less articulated trajectory reconstruction
Y Zhu, J Valmadre, S Lucey
6*
Local Metrics for Multi-Object Tracking
J Valmadre, A Bewley, J Huang, C Sun, C Sminchisescu, C Schmid
arXiv preprint arXiv:2104.02631, 2021
32021
ThethermalinfraredvisualobjecttrackingVOTGTIR2016chalG lengeresults
M Felsberg, M KRISTAN
ComputerVisionGECCV2016Workshops. Cham: Springer, 2016
32016
Stationary processes for object detection and non-rigid structure-from-motion
JL Valmadre
Queensland University of Technology, 2016
2016
Graph rigidity for near-coplanar structure from motion
J Valmadre, B Upcroft, S Sridharan, S Lucey
Digital Image Computing Techniques and Applications (DICTA), 2011 …, 2011
2011
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–20