Eliminating Gibbs phenomena: A non-linear Petrov–Galerkin method for the convection–diffusion–reaction equation P Houston, S Roggendorf, KG van der Zee Computers & Mathematics with Applications 80 (5), 851-873, 2020 | 17 | 2020 |
Numerical aspects of model order reduction for gas transportation networks S Grundel, N Hornung, S Roggendorf Simulation-Driven Modeling and Optimization: ASDOM, Reykjavik, August 2014, 1-28, 2016 | 13 | 2016 |
The convection-diffusion-reaction equation in non-Hilbert Sobolev spaces: A direct proof of the inf-sup condition and stability of Galerkin’s method P Houston, I Muga, S Roggendorf, KG van der Zee Computational Methods in Applied Mathematics 19 (3), 503-522, 2019 | 8 | 2019 |
Gibbs phenomena for Lq-best approximation in finite element spaces P Houston, S Roggendorf, KG Van Der Zee ESAIM: Mathematical Modelling and Numerical Analysis 56 (1), 177-211, 2022 | 6* | 2022 |
Eliminating the Gibbs phenomenon: the non-linear Petrov-Galerkin method for the convection-diffusion-reaction equation S Roggendorf University of Nottingham, 2019 | 3 | 2019 |
Eliminating oscillations near discontinuities using a non-linear Petrov-Galerkin method in Banach spaces P Houston, I Muga, S Roggendorf, KG van der Zee | | |