Behavior of periodic solutions of viscous conservation laws under localized and nonlocalized perturbations MA Johnson, P Noble, LM Rodrigues, K Zumbrun Inventiones mathematicae 197 (1), 115-213, 2014 | 83 | 2014 |

Shallow water equations for non-Newtonian fluids ED Fernández-Nieto, P Noble, JP Vila Journal of Non-Newtonian Fluid Mechanics 165 (13-14), 712-732, 2010 | 83 | 2010 |

Mathematical justification of a shallow water model D Bresch, P Noble Methods and applications of analysis 14 (2), 87-118, 2007 | 82 | 2007 |

Nonlinear modulational stability of periodic traveling-wave solutions of the generalized Kuramoto–Sivashinsky equation B Barker, MA Johnson, P Noble, LM Rodrigues, K Zumbrun Physica D: Nonlinear Phenomena 258, 11-46, 2013 | 69 | 2013 |

Breathers on diatomic Fermi–Pasta–Ulam lattices G James, P Noble Physica D: Nonlinear Phenomena 196 (1-2), 124-171, 2004 | 55 | 2004 |

Slow modulations of periodic waves in Hamiltonian PDEs, with application to capillary fluids S Benzoni-Gavage, P Noble, LM Rodrigues Journal of Nonlinear Science 24, 711-768, 2014 | 49 | 2014 |

Nonlocalized modulation of periodic reaction diffusion waves: the Whitham equation MA Johnson, P Noble, LM Rodrigues, K Zumbrun Archive for Rational Mechanics and Analysis 207 (2), 669-692, 2013 | 47 | 2013 |

Nonlinear stability of viscous roll waves MA Johnson, K Zumbrun, P Noble SIAM Journal on Mathematical analysis 43 (2), 577-611, 2011 | 45 | 2011 |

Shallow water viscous flows for arbitrary topopgraphy M Boutounet, L Chupin, P Noble, JP Vila Communications in Mathematical Sciences 6 (1), 29-55, 2008 | 45 | 2008 |

Thin power-law film flow down an inclined plane: consistent shallow-water models and stability under large-scale perturbations P Noble, JP Vila Journal of Fluid Mechanics 735, 29-60, 2013 | 42 | 2013 |

Nonlocalized modulation of periodic reaction diffusion waves: nonlinear stability MA Johnson, P Noble, LM Rodrigues, K Zumbrun Archive for Rational Mechanics and Analysis 207 (2), 693-715, 2013 | 42 | 2013 |

Spectral stability of periodic wave trains of the Korteweg-de Vries/Kuramoto-Sivashinsky equation in the Korteweg-de Vries limit M Johnson, P Noble, L Rodrigues, K Zumbrun Transactions of the American Mathematical Society 367 (3), 2159-2212, 2015 | 38 | 2015 |

Mathematical derivation of viscous shallow-water equations with zero surface tension D Bresch, P Noble Indiana University Mathematics Journal, 1137-1169, 2011 | 37 | 2011 |

A generalization of the quantum Bohm identity: Hyperbolic CFL condition for Euler–Korteweg equations D Bresch, F Couderc, P Noble, JP Vila Comptes Rendus. Mathématique 354 (1), 39-43, 2016 | 35 | 2016 |

Discrete transparent boundary conditions for the linearized Green--Naghdi system of equations M Kazakova, P Noble SIAM Journal on Numerical Analysis 58 (1), 657-683, 2020 | 34 | 2020 |

Discrete transparent boundary conditions for the mixed KDV–BBM equation C Besse, P Noble, D Sanchez Journal of Computational Physics 345, 484-509, 2017 | 33 | 2017 |

Artificial boundary conditions for the linearized Benjamin–Bona–Mahony equation C Besse, B Mésognon-Gireau, P Noble Numerische Mathematik 139 (2), 281-314, 2018 | 30 | 2018 |

Spectral stability of inviscid roll waves MA Johnson, P Noble, LM Rodrigues, Z Yang, K Zumbrun Communications in Mathematical Physics 367, 265-316, 2019 | 28 | 2019 |

Stability of viscous St. Venant roll waves: from onset to infinite Froude number limit B Barker, MA Johnson, P Noble, LM Rodrigues, K Zumbrun Journal of Nonlinear Science 27, 285-342, 2017 | 28 | 2017 |

Stability of periodic Kuramoto–Sivashinsky waves B Barker, MA Johnson, P Noble, LM Rodrigues, K Zumbrun Applied Mathematics Letters 25 (5), 824-829, 2012 | 28 | 2012 |