Convolutional sequence to sequence learning J Gehring, M Auli, D Grangier, D Yarats, YN Dauphin arXiv preprint arXiv:1705.03122, 2017 | 1955 | 2017 |
mixup: Beyond empirical risk minimization H Zhang, M Cisse, YN Dauphin, D Lopez-Paz arXiv preprint arXiv:1710.09412, 2017 | 1327 | 2017 |
Identifying and attacking the saddle point problem in high-dimensional non-convex optimization YN Dauphin, R Pascanu, C Gulcehre, K Cho, S Ganguli, Y Bengio Advances in neural information processing systems 27, 2933-2941, 2014 | 1073 | 2014 |
Language modeling with gated convolutional networks YN Dauphin, A Fan, M Auli, D Grangier International conference on machine learning, 933-941, 2017 | 964 | 2017 |
Theano: A Python framework for fast computation of mathematical expressions R Al-Rfou, G Alain, A Almahairi, C Angermueller, D Bahdanau, N Ballas, ... arXiv, arXiv: 1605.02688, 2016 | 631 | 2016 |
Using recurrent neural networks for slot filling in spoken language understanding G Mesnil, Y Dauphin, K Yao, Y Bengio, L Deng, D Hakkani-Tur, X He, ... IEEE/ACM Transactions on Audio, Speech, and Language Processing 23 (3), 530-539, 2014 | 477 | 2014 |
Parseval networks: Improving robustness to adversarial examples M Cisse, P Bojanowski, E Grave, Y Dauphin, N Usunier arXiv preprint arXiv:1704.08847, 2017 | 424 | 2017 |
Emonets: Multimodal deep learning approaches for emotion recognition in video SE Kahou, X Bouthillier, P Lamblin, C Gulcehre, V Michalski, K Konda, ... Journal on Multimodal User Interfaces 10 (2), 99-111, 2016 | 312 | 2016 |
Hierarchical neural story generation A Fan, M Lewis, Y Dauphin arXiv preprint arXiv:1805.04833, 2018 | 303 | 2018 |
Combining modality specific deep neural networks for emotion recognition in video SE Kahou, C Pal, X Bouthillier, P Froumenty, Ç Gülçehre, R Memisevic, ... Proceedings of the 15th ACM on International conference on multimodal …, 2013 | 290 | 2013 |
A convolutional encoder model for neural machine translation J Gehring, M Auli, D Grangier, YN Dauphin arXiv preprint arXiv:1611.02344, 2016 | 286 | 2016 |
Better mixing via deep representations Y Bengio, G Mesnil, Y Dauphin, S Rifai International conference on machine learning, 552-560, 2013 | 267 | 2013 |
The manifold tangent classifier S Rifai, YN Dauphin, P Vincent, Y Bengio, X Muller Advances in neural information processing systems, 2294-2302, 2011 | 264 | 2011 |
Equilibrated adaptive learning rates for non-convex optimization Y Dauphin, H De Vries, Y Bengio Advances in neural information processing systems 28, 1504-1512, 2015 | 232 | 2015 |
Unsupervised and transfer learning challenge: a deep learning approach GMY Dauphin, X Glorot, S Rifai, Y Bengio, I Goodfellow, E Lavoie, ... Proceedings of ICML Workshop on Unsupervised and Transfer Learning, 97-110, 2012 | 208 | 2012 |
Pay less attention with lightweight and dynamic convolutions F Wu, A Fan, A Baevski, YN Dauphin, M Auli arXiv preprint arXiv:1901.10430, 2019 | 196 | 2019 |
Deal or no deal? end-to-end learning for negotiation dialogues M Lewis, D Yarats, YN Dauphin, D Parikh, D Batra arXiv preprint arXiv:1706.05125, 2017 | 188 | 2017 |
Higher order contractive auto-encoder S Rifai, G Mesnil, P Vincent, X Muller, Y Bengio, Y Dauphin, X Glorot Joint European conference on machine learning and knowledge discovery in …, 2011 | 181 | 2011 |
Empirical analysis of the hessian of over-parametrized neural networks L Sagun, U Evci, VU Guney, Y Dauphin, L Bottou arXiv preprint arXiv:1706.04454, 2017 | 135 | 2017 |
Theano: A Python framework for fast computation of mathematical expressions TTD Team, R Al-Rfou, G Alain, A Almahairi, C Angermueller, D Bahdanau, ... arXiv preprint arXiv:1605.02688, 2016 | 123 | 2016 |