Christian Daul
Christian Daul
Full professor, Université de Lorraine
Adresse e-mail validée de - Page d'accueil
Citée par
Citée par
Deep learning for detection and segmentation of artefact and disease instances in gastrointestinal endoscopy
S Ali, M Dmitrieva, N Ghatwary, S Bano, G Polat, A Temizel, A Krenzer, ...
Medical image analysis 70, 102002, 2021
An objective comparison of detection and segmentation algorithms for artefacts in clinical endoscopy
S Ali, F Zhou, B Braden, A Bailey, S Yang, G Cheng, P Zhang, X Li, ...
Scientific reports 10 (1), 2748, 2020
Mosaicing of bladder endoscopic image sequences: Distortion calibration and registration algorithm
R Miranda-Luna, C Daul, WCPM Blondel, Y Hernandez-Mier, D Wolf, ...
IEEE Transactions on Biomedical Engineering 55 (2), 541-553, 2008
Endoscopy artifact detection (EAD 2019) challenge dataset
S Ali, F Zhou, C Daul, B Braden, A Bailey, S Realdon, J East, ...
arXiv preprint arXiv:1905.03209, 2019
Fast construction of panoramic images for cystoscopic exploration
Y Hernandez-Mier, W Blondel, C Daul, D Wolf, F Guillemin
Computerized Medical Imaging and Graphics 34 (7), 579-592, 2010
A multi-centre polyp detection and segmentation dataset for generalisability assessment
S Ali, D Jha, N Ghatwary, S Realdon, R Cannizzaro, OE Salem, ...
Scientific Data 10 (1), 75, 2023
Texture-based analysis of clustered microcalcifications detected on mammograms
A Tiedeu, C Daul, A Kentsop, P Graebling, D Wolf
Digital Signal Processing, 2012
Graph based construction of textured large field of view mosaics for bladder cancer diagnosis
T Weibel, C Daul, D Wolf, R Rösch, F Guillemin
Pattern Recognition 45 (12), 4138-4150, 2012
Flexible calibration of structured-light systems projecting point patterns
A Ben-Hamadou, C Soussen, C Daul, W Blondel, D Wolf
Computer Vision and Image Understanding 117 (10), 1468-1481, 2013
Assessing generalisability of deep learning-based polyp detection and segmentation methods through a computer vision challenge
S Ali, N Ghatwary, D Jha, E Isik-Polat, G Polat, C Yang, W Li, A Galdran, ...
Scientific Reports 14 (1), 2032, 2024
Illumination invariant optical flow using neighborhood descriptors
S Ali, C Daul, E Galbrun, W Blondel
Computer Vision and Image Understanding, 2016
Assessing deep learning methods for the identification of kidney stones in endoscopic images
F Lopez, A Varelo, O Hinojosa, M Mendez, DH Trinh, Y ElBeze, J Hubert, ...
2021 43rd Annual International Conference of the IEEE Engineering in …, 2021
A simplified method of endoscopic image distortion correction based on grey level registration
R Miranda-Luna, W Blondel, C Daul, Y Hernandez-Mier, R Posada, ...
2004 International Conference on Image Processing, 2004. ICIP'04. 5, 3383-3386, 2004
From the hough transform to a new approach for the detection and approximation of elliptical arcs
C Daul, P Graebling, E Hirsch
Computer Vision and Image Understanding 72 (3), 215-236, 1998
Towards an automated classification method for ureteroscopic kidney stone images using ensemble learning
A Martínez, DH Trinh, J El Beze, J Hubert, P Eschwege, V Estrade, ...
2020 42nd Annual International Conference of the IEEE Engineering in …, 2020
Optical flow-based structure-from-motion for the reconstruction of epithelial surfaces
TB Phan, DH Trinh, D Wolf, C Daul
Pattern Recognition 105, 107391, 2020
Endoscopy disease detection challenge 2020
S Ali, N Ghatwary, B Braden, D Lamarque, A Bailey, S Realdon, ...
arXiv preprint arXiv:2003.03376, 2020
Endoscopic bladder image registration using sparse graph cuts
T Weibel, C Daul, D Wolf, R Rösch, A Ben-Hamadou
2010 IEEE International Conference on Image Processing, 157-160, 2010
Mosaicing of medical video-endoscopic images: data quality improvement and algorithm testing
R Miranda-Luna, Y Hernandez-Mier, C Daul, WCPM Blondel, D Wolf
(ICEEE). 1st International Conference on Electrical and Electronics …, 2004
Fast mosaicing of cystoscopic images from dense correspondence: combined SURF and TV-L1 optical flow method
S Ali, C Daul, T Weibel, W Blondel
2013 IEEE International Conference on Image Processing, 1291-1295, 2013
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–20