Suivre
Thierry Tambe
Thierry Tambe
Graduate Student, Harvard University
Adresse e-mail validée de g.harvard.edu - Page d'accueil
Titre
Citée par
Citée par
Année
Masr: A modular accelerator for sparse rnns
U Gupta, B Reagen, L Pentecost, M Donato, T Tambe, AM Rush, GY Wei, ...
2019 28th International Conference on Parallel Architectures and Compilation …, 2019
512019
Edgebert: Sentence-level energy optimizations for latency-aware multi-task nlp inference
T Tambe, C Hooper, L Pentecost, T Jia, EY Yang, M Donato, V Sanh, ...
MICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchitecture …, 2021
382021
Algorithm-hardware co-design of adaptive floating-point encodings for resilient deep learning inference
T Tambe, EY Yang, Z Wan, Y Deng, VJ Reddi, A Rush, D Brooks, GY Wei
2020 57th ACM/IEEE Design Automation Conference (DAC), 1-6, 2020
322020
9.8 A 25mm2 SoC for IoT Devices with 18ms Noise-Robust Speech-to-Text Latency via Bayesian Speech Denoising and Attention-Based Sequence-to-Sequence …
T Tambe, EY Yang, GG Ko, Y Chai, C Hooper, M Donato, PN Whatmough, ...
2021 IEEE International Solid-State Circuits Conference (ISSCC) 64, 158-160, 2021
252021
Adaptivfloat: A floating-point based data type for resilient deep learning inference
T Tambe, EY Yang, Z Wan, Y Deng, VJ Reddi, A Rush, D Brooks, GY Wei
arXiv preprint arXiv:1909.13271, 2019
222019
Robomorphic computing: a design methodology for domain-specific accelerators parameterized by robot morphology
SM Neuman, B Plancher, T Bourgeat, T Tambe, S Devadas, VJ Reddi
Proceedings of the 26th ACM International Conference on Architectural …, 2021
142021
A 3mm2 Programmable Bayesian Inference Accelerator for Unsupervised Machine Perception using Parallel Gibbs Sampling in 16nm
GG Ko, Y Chai, M Donato, PN Whatmough, T Tambe, RA Rutenbar, ...
2020 IEEE Symposium on VLSI Circuits, 1-2, 2020
92020
EdgeBERT: Optimizing On-chip inference for multi-task NLP
T Tambe, C Hooper, L Pentecost, EY Yang, M Donato, V Sanh, AM Rush, ...
arXiv preprint arXiv:2011.14203, 2020
72020
Autosoc: Automating algorithm-soc co-design for aerial robots
S Krishnan, T Tambe, Z Wan, VJ Reddi
arXiv preprint arXiv:2109.05683, 2021
52021
A scalable bayesian inference accelerator for unsupervised learning
G Ko, Y Chai, M Donato, PN Whatmough, T Tambe, RA Rutenbar, GY Wei, ...
2020 IEEE Hot Chips 32 Symposium (HCS), 1-27, 2020
32020
SM6: A 16nm System-on-Chip for Accurate and Noise-Robust Attention-Based NLP Applications : The 33rd Hot Chips Symposium – August 22-24, 2021
T Tambe, EY Yang, GG Ko, Y Chai, C Hooper, M Donato, PN Whatmough, ...
2021 IEEE Hot Chips 33 Symposium (HCS), 1-13, 2021
22021
Study of posit numeric in speech recognition neural inference
Z Wan, E Mibuari, EY Yang, T Tambe
Harvard Univ., Cambridge, MA, USA, Tech. Rep. CS247r, 2018
22018
ASAP: automatic synthesis of area-efficient and precision-aware CGRAs
C Tan, T Tambe, J Zhang, B Fang, T Geng, GY Wei, D Brooks, A Tumeo, ...
Proceedings of the 36th ACM International Conference on Supercomputing, 1-13, 2022
12022
GoldenEye: A Platform for Evaluating Emerging Numerical Data Formats in DNN Accelerators
A Mahmoud, T Tambe, T Aloui, D Brooks, GY Wei
2022 52nd Annual IEEE/IFIP International Conference on Dependable Systems …, 2022
12022
Specialized Accelerators and Compiler Flows: Replacing Accelerator APIs with a Formal Software/Hardware Interface
BY Huang, S Lyubomirsky, Y Li, M He, T Tambe, GH Smith, A Gaonkar, ...
arXiv preprint arXiv:2203.00218, 2022
12022
A 16-nm SoC for Noise-Robust Speech and NLP Edge AI Inference With Bayesian Sound Source Separation and Attention-Based DNNs
T Tambe, EY Yang, GG Ko, Y Chai, C Hooper, M Donato, PN Whatmough, ...
IEEE Journal of Solid-State Circuits, 2022
2022
Quantifying and Maximizing the Benefits of Back-End Noise Adaption on Attention-Based Speech Recognition Models
C Hooper, T Tambe, GY Wei
arXiv preprint arXiv:2105.01134, 2021
2021
Learnings from a HLS-based High-Productivity Digital VLSI Flow
T Tambe, D Brooks, GY Wei
2021
From DSLs to Accelerator-Rich Platform Implementations: Addressing the Mapping Gap
BY Huang, S Lyubomirsky, T Tambe, Y Li, M He, G Smith, GY Wei, ...
2021
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–19