Suivre
Yousri Kessentini
Yousri Kessentini
Digital Research Center of Sfax (CRNS), Tunisia
Adresse e-mail validée de crns.rnrt.tn - Page d'accueil
Titre
Citée par
Citée par
Année
Federated learning for COVID-19 screening from Chest X-ray images
I Feki, S Ammar, Y Kessentini, K Muhammad
Applied Soft Computing 106, 107330, 2021
2032021
Off-line handwritten word recognition using multi-stream hidden Markov models
Y Kessentini, T Paquet, AMB Hamadou
Pattern Recognition Letters 31 (1), 60-70, 2010
1352010
A two-stage deep neural network for multi-norm license plate detection and recognition
Y Kessentini, MD Besbes, S Ammar, A Chabbouh
Expert systems with applications 136, 159-170, 2019
1192019
DE-GAN: A Conditional Generative Adversarial Network for Document Enhancement
MA Souibgui, Y Kessentini
IEEE transactions on pattern analysis and machine intelligence 44 (3), 1180-1191, 2022
1002022
Enhance to read better: A Multi-Task Adversarial Network for Handwritten Document Image Enhancement
S Khamekhem Jemni, MA Souibgui, Y Kessentini, A Fornés
Pattern Recognition 123 (108370), 2022
532022
Transformer-based approach for joint handwriting and named entity recognition in historical document
AC Rouhou, M Dhiaf, Y Kessentini, SB Salem
Pattern Recognition Letters 155, 128-134, 2022
502022
Docentr: An end-to-end document image enhancement transformer
MA Souibgui, S Biswas, SK Jemni, Y Kessentini, A Fornés, J Lladós, ...
2022 26th International Conference on Pattern Recognition (ICPR), 1699-1705, 2022
422022
A Dempster–Shafer theory based combination of handwriting recognition systems with multiple rejection strategies
Y Kessentini, T Burger, T Paquet
Pattern recognition 48 (2), 534-544, 2015
392015
A Deep HMM model for multiple keywords spotting in handwritten documents
S Thomas, C Chatelain, L Heutte, T Paquet, Y Kessentini
Pattern Analysis and Applications 18, 1003-1015, 2015
332015
A multi-stream HMM-based approach for off-line multi-script handwritten word recognition
Y KESSENTINI, T PAQUET, AM BEN HAMADOU
International Conference on Frontiers in Handwriting Recognition ICFHR 1 …, 2008
322008
Out of vocabulary word detection and recovery in Arabic handwritten text recognition
SK Jemni, Y Kessentini, S Kanoun
Pattern Recognition 93, 507-520, 2019
232019
Few shots are all you need: a progressive learning approach for low resource handwritten text recognition
MA Souibgui, A Fornés, Y Kessentini, B Megyesi
Pattern Recognition Letters 160, 43-49, 2022
22*2022
Handwritten document segmentation using hidden Markov random fields
S Nicolas, Y Kessentini, T Paquet, L Heutte
Eighth International Conference on Document Analysis and Recognition (ICDAR …, 2005
222005
A few-shot learning approach for historical ciphered manuscript recognition
MA Souibgui, A Fornés, Y Kessentini, C Tudor
2020 25th International Conference on Pattern Recognition (ICPR), 5413-5420, 2021
212021
Two stages pan-sharpening details injection approach based on very deep residual networks
T Benzenati, A Kallel, Y Kessentini
IEEE Transactions on Geoscience and Remote Sensing 59 (6), 4984-4992, 2020
212020
Generalized Laplacian Pyramid Pan-Sharpening Gain Injection Prediction Based on CNN
T Benzenati, Y Kessentini, A Kallel, H Hallabia
IEEE Geoscience and Remote Sensing Letters 17 (4), 651-655, 2020
212020
Evidential Combination of SVM Classifiers for Writer Recognition
Y Kessentini, S BenAbderrahim, C Djeddi
Neurocomputing 313, pp. 1-13, 2018
212018
Offline Arabic handwriting recognition using BLSTMs combination
SK Jemni, Y Kessentini, S Kanoun, JM Ogier
2018 13th IAPR International Workshop on Document Analysis Systems (DAS), 31-36, 2018
212018
Pansharpening approach via two-stream detail injection based on relativistic generative adversarial networks
T Benzenati, Y Kessentini, A Kallel
Expert Systems with Applications 188, 115996, 2022
202022
Multi-nation and multi-norm license plates detection in real traffic surveillance environment using deep learning
A Naimi, Y Kessentini, M Hammami
Neural Information Processing: 23rd International Conference, ICONIP 2016 …, 2016
202016
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–20