esben lorentzen
esben lorentzen
Associate Professor
Adresse e-mail validée de - Page d'accueil
Citée par
Citée par
Phosphoproteomics reveals that Parkinson's disease kinase LRRK2 regulates a subset of Rab GTPases
M Steger, F Tonelli, G Ito, P Davies, M Trost, M Vetter, S Wachter, ...
elife 5, e12813, 2016
A single subunit, Dis3, is essentially responsible for yeast exosome core activity
A Dziembowski, E Lorentzen, E Conti, B Séraphin
Nature structural & molecular biology 14 (1), 15-22, 2007
The crystal structure of the exon junction complex reveals how it maintains a stable grip on mRNA
F Bono, J Ebert, E Lorentzen, E Conti
Cell 126 (4), 713-725, 2006
Systematic proteomic analysis of LRRK2-mediated Rab GTPase phosphorylation establishes a connection to ciliogenesis
M Steger, F Diez, HS Dhekne, P Lis, RS Nirujogi, O Karayel, F Tonelli, ...
elife 6, e31012, 2017
Molecular basis of tubulin transport within the cilium by IFT74 and IFT81
S Bhogaraju, L Cajanek, C Fort, T Blisnick, K Weber, M Taschner, ...
Science 341 (6149), 1009-1012, 2013
The intraflagellar transport machinery
M Taschner, E Lorentzen
Cold Spring Harbor perspectives in biology 8 (10), a028092, 2016
The yeast exosome functions as a macromolecular cage to channel RNA substrates for degradation
F Bonneau, J Basquin, J Ebert, E Lorentzen, E Conti
Cell 139 (3), 547-559, 2009
The archaeal exosome core is a hexameric ring structure with three catalytic subunits
E Lorentzen, P Walter, S Fribourg, E Evguenieva-Hackenberg, G Klug, ...
Nature structural & molecular biology 12 (7), 575-581, 2005
Architecture and function of IFT complex proteins in ciliogenesis
M Taschner, S Bhogaraju, E Lorentzen
Differentiation 83 (2), S12-S22, 2012
Structure of the active subunit of the yeast exosome core, Rrp44: diverse modes of substrate recruitment in the RNase II nuclease family
E Lorentzen, J Basquin, R Tomecki, A Dziembowski, E Conti
Molecular cell 29 (6), 717-728, 2008
Intraflagellar transport proteins 172, 80, 57, 54, 38, and 20 form a stable tubulin‐binding IFT‐B2 complex
M Taschner, K Weber, A Mourão, M Vetter, M Awasthi, M Stiegler, ...
The EMBO journal 35 (7), 773-790, 2016
Trafficking of ciliary membrane proteins by the intraflagellar transport/BBSome machinery
JL Wingfield, KF Lechtreck, E Lorentzen
Essays in biochemistry 62 (6), 753-763, 2018
RNA channelling by the archaeal exosome
E Lorentzen, A Dziembowski, D Lindner, B Seraphin, E Conti
EMBO reports 8 (5), 470-476, 2007
Crystal structures of IFT70/52 and IFT52/46 provide insight into intraflagellar transport B core complex assembly
M Taschner, F Kotsis, P Braeuer, EW Kuehn, E Lorentzen
Journal of Cell Biology 207 (2), 269-282, 2014
Structural basis of 3′ end RNA recognition and exoribonucleolytic cleavage by an exosome RNase PH core
E Lorentzen, E Conti
Molecular cell 20 (3), 473-481, 2005
Intraflagellar transport complex structure and cargo interactions
S Bhogaraju, BD Engel, E Lorentzen
Cilia 2, 1-9, 2013
Crystal structure of the intraflagellar transport complex 25/27
S Bhogaraju, M Taschner, M Morawetz, C Basquin, E Lorentzen
The EMBO journal 30 (10), 1907-1918, 2011
Mutations in TRAF3IP1/IFT54 reveal a new role for IFT proteins in microtubule stabilization
AA Bizet, A Becker-Heck, R Ryan, K Weber, E Filhol, P Krug, J Halbritter, ...
Nature communications 6 (1), 8666, 2015
RNA polyadenylation in Archaea: not observed in Haloferax while the exosome polynucleotidylates RNA in Sulfolobus
V Portnoy, E Evguenieva‐Hackenberg, F Klein, P Walter, E Lorentzen, ...
EMBO reports 6 (12), 1188-1193, 2005
Biochemical mapping of interactions within the intraflagellar transport (IFT) B core complex: IFT52 binds directly to four other IFT-B subunits
M Taschner, S Bhogaraju, M Vetter, M Morawetz, E Lorentzen
Journal of Biological Chemistry 286 (30), 26344-26352, 2011
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–20