Natural evolution strategies D Wierstra, T Schaul, T Glasmachers, Y Sun, J Peters, J Schmidhuber The Journal of Machine Learning Research 15 (1), 949-980, 2014 | 272 | 2014 |
Shark C Igel, V Heidrich-Meisner, T Glasmachers Journal of machine learning research 9 (Jun), 993-996, 2008 | 242 | 2008 |
Exponential natural evolution strategies T Glasmachers, T Schaul, S Yi, D Wierstra, J Schmidhuber Proceedings of the 12th annual conference on Genetic and evolutionary …, 2010 | 152 | 2010 |
Maximum-gain working set selection for SVMs T Glasmachers, C Igel The Journal of Machine Learning Research 7, 1437-1466, 2006 | 100 | 2006 |
A Unified View on Multi-class Support Vector Classification. Ü Dogan, T Glasmachers, C Igel J. Mach. Learn. Res. 17 (45), 1-32, 2016 | 73 | 2016 |
High dimensions and heavy tails for natural evolution strategies T Schaul, T Glasmachers, J Schmidhuber Proceedings of the 13th annual conference on Genetic and evolutionary …, 2011 | 69 | 2011 |
Gradient-based adaptation of general Gaussian kernels T Glasmachers, C Igel Neural Computation 17 (10), 2099-2105, 2005 | 69 | 2005 |
Gradient-based optimization of kernel-target alignment for sequence kernels applied to bacterial gene start detection C Igel, T Glasmachers, B Mersch, N Pfeifer, P Meinicke IEEE/ACM Transactions on Computational Biology and Bioinformatics 4 (2), 216-226, 2007 | 67 | 2007 |
Limits of end-to-end learning T Glasmachers arXiv preprint arXiv:1704.08305, 2017 | 60 | 2017 |
Maximum likelihood model selection for 1-norm soft margin SVMs with multiple parameters T Glasmachers, C Igel IEEE transactions on pattern analysis and machine intelligence 32 (8), 1522-1528, 2010 | 38 | 2010 |
Second-order SMO improves SVM online and active learning T Glasmachers, C Igel Neural Computation 20 (2), 374-382, 2008 | 36 | 2008 |
Evolutionary optimization of sequence kernels for detection of bacterial gene starts B Mersch, T Glasmachers, P Meinicke, C Igel International Journal of Neural Systems 17 (5), 369-381, 2007 | 31 | 2007 |
A natural evolution strategy for multi-objective optimization T Glasmachers, T Schaul, J Schmidhuber International Conference on Parallel Problem Solving from Nature, 627-636, 2010 | 27 | 2010 |
Accelerated coordinate descent with adaptive coordinate frequencies T Glasmachers, U Dogan Asian Conference on Machine Learning, 72-86, 2013 | 24 | 2013 |
Novelty-based restarts for evolution strategies G Cuccu, F Gomez, T Glasmachers 2011 IEEE Congress of Evolutionary Computation (CEC), 158-163, 2011 | 24 | 2011 |
Large scale black-box optimization by limited-memory matrix adaptation I Loshchilov, T Glasmachers, HG Beyer IEEE Transactions on Evolutionary Computation 23 (2), 353-358, 2018 | 22 | 2018 |
Artificial curiosity for autonomous space exploration V Graziano, T Glasmachers, T Schaul, L Pape, G Cuccu, J Leitner, ... Acta Futura 4, 41-51, 2011 | 18 | 2011 |
A comparative study on large scale kernelized support vector machines D Horn, A Demircioğlu, B Bischl, T Glasmachers, C Weihs Advances in Data Analysis and Classification 12 (4), 867-883, 2018 | 17 | 2018 |
Unbounded population MO-CMA-ES for the bi-objective BBOB test suite O Krause, T Glasmachers, N Hansen, C Igel Proceedings of the 2016 on Genetic and Evolutionary Computation Conference …, 2016 | 16 | 2016 |
Uncertainty handling in model selection for support vector machines T Glasmachers, C Igel International Conference on Parallel Problem Solving from Nature, 185-194, 2008 | 15 | 2008 |