J Rabault
J Rabault
Affiliation inconnue
Adresse e-mail validée de
Citée par
Citée par
Artificial Neural Networks trained through Deep Reinforcement Learning discover control strategies for active flow control
J Rabault, M Kuchta, A Jensen, U Reglade, N Cerardi
Journal of Fluid Mechanics, 2019
A review on Deep Reinforcement Learning for Fluid Mechanics
P Garnier, J Viquerat, J Rabault, A Larcher, A Kuhnle, E Hachem
Computers and Fluids, 2021
Robust active flow control over a range of Reynolds numbers using an artificial neural network trained through deep reinforcement learning
H Tang, J Rabault, A Kuhnle, Y Wang, T Wang
Physics of Fluids, 2020
Direct shape optimization through deep reinforcement learning
J Viquerat, J Rabault, A Kuhnle, H Ghraieb, A Larcher, E Hachem
Journal of Computational Physics 428, 110080, 2021
Accelerating deep reinforcement learning strategies of flow control through a multi-environment approach
J Rabault, A Kuhnle
Physics of Fluids 31 (9), 2019
Performing particle image velocimetry using artificial neural networks: a proof-of-concept
J Rabault, J Kolaas, A Jensen
Measurement Science and Technology 28 (12), 125301, 2017
Applying deep reinforcement learning to active flow control in weakly turbulent conditions
F Ren, J Rabault, H Tang
Physics of Fluids 33 (3), 2021
Deep reinforcement learning in fluid mechanics: A promising method for both active flow control and shape optimization
J Rabault, F Ren, W Zhang, H Tang, H Xu
Journal of Hydrodynamics, 2020
Observations of wave dispersion and attenuation in landfast ice
G Sutherland, J Rabault
Journal of Geophysical Research: Oceans, 2016
Experiments on wave propagation in grease ice: combined wave gauges and particle image velocimetry measurements
J Rabault, G Sutherland, A Jensen, KH Christensen, A Marchenko
Journal of Fluid Mechanics 864, 876-898, 2019
Exploiting locality and translational invariance to design effective deep reinforcement learning control of the 1-dimensional unstable falling liquid film
V Belus, J Rabault, J Viquerat, Z Che, E Hachem, U Reglade
AIP Advances 9 (12), 2019
Active flow control with rotating cylinders by an artificial neural network trained by deep reinforcement learning
H Xu, W Zhang, J Deng, J Rabault
Journal of Hydrodynamics, 2020
A two layer model for wave dissipation in sea ice
G Sutherland, J Rabault, K Christensen, A Jensen
Applied Ocean Research, 2019
A study using PIV of the intake flow in a diesel engine cylinder
J Rabault, JA Vernet, B Lindgren, PH Alfredsson
International Journal of Heat and Fluid Flow, 2016
Curving to fly: Synthetic adaptation unveils optimal flight performance of whirling fruits
J Rabault, RA Fauli, A Carlson
Physical Review Letters 122 (2), 024501, 2019
Measurements of wave damping by a grease ice slick in Svalbard using off-the-shelf sensors and open source electronics
J Rabault, G Sutherland, O Gundersen, A Jensen
Journal of Glaciology, 2017
An open source, versatile, affordable waves in ice instrument for scientific measurements in the Polar Regions
J Rabault, G Sutherland, O Gundersen, A Jensen, A Marchenko, Ø Breivik
Cold Regions Science and Technology 170, 102955, 2020
Flow control in wings and discovery of novel approaches via deep reinforcement learning
R Vinuesa, O Lehmkuhl, A Lozano-Durán, J Rabault
Fluids 7 (2), 62, 2022
The attenuation of monochromatic surface waves due to the presence of an inextensible cover
G Sutherland, T Halsne, J Rabault, A Jensen
Wave motion, 2017
Experimental evidence for a universal threshold characterizing wave-induced sea ice break-up
JJ Voermans, J Rabault, K Filchuk, I Ryzhov, P Heil, A Marchenko, ...
The Cryosphere 14 (11), 4265-4278, 2020
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–20