Making deep neural networks robust to label noise: a loss correction approach G Patrini, A Rozza, A Menon, R Nock, L Qu arXiv preprint arXiv:1609.03683, 2016 | 417 | 2016 |
Private federated learning on vertically partitioned data via entity resolution and additively homomorphic encryption S Hardy, W Henecka, H Ivey-Law, R Nock, G Patrini, G Smith, B Thorne arXiv preprint arXiv:1711.10677, 2017 | 120 | 2017 |
Loss factorization, weakly supervised learning and label noise robustness G Patrini, F Nielsen, R Nock, M Carioni International conference on machine learning, 708-717, 2016 | 75 | 2016 |
Sinkhorn autoencoders G Patrini, R van den Berg, P Forre, M Carioni, S Bhargav, M Welling, ... Uncertainty in Artificial Intelligence, 733-743, 2020 | 32 | 2020 |
Entity resolution and federated learning get a federated resolution R Nock, S Hardy, W Henecka, H Ivey-Law, G Patrini, G Smith, B Thorne arXiv preprint arXiv:1803.04035, 2018 | 29 | 2018 |
Tsallis regularized optimal transport and ecological inference B Muzellec, R Nock, G Patrini, F Nielsen Proceedings of the AAAI Conference on Artificial Intelligence 31 (1), 2017 | 28 | 2017 |
(Almost) No Label No Cry G Patrini, R Nock, P Rivera, T Caetano Advances in Neural Information Processing Systems, 190-198, 2014 | 19 | 2014 |
The State Of Deepfakes: Landscape, Threats and Impact H Ajder, G Patrini, F Cavalli, L Cullen https://sensity.ai/reports, 2019 | 17 | 2019 |
Local search techniques for computing equilibria in two-player general-sum strategic-form games S Ceppi, N Gatti, G Patrini, M Rocco Proceedings of the 9th International Conference on Autonomous Agents and …, 2010 | 17 | 2010 |
Combining local search techniques and path following for bimatrix games N Gatti, G Patrini, M Rocco, T Sandholm arXiv preprint arXiv:1210.4858, 2012 | 16 | 2012 |
Local search methods for finding a Nash equilibrium in two-player games S Ceppi, N Gatti, G Patrini, M Rocco IAT, Toronto, Canada, 335-342, 2010 | 14 | 2010 |
Rademacher observations, private data, and boosting R Nock, G Patrini, A Friedman International Conference on Machine Learning, 948-956, 2015 | 12 | 2015 |
SEALion: A framework for neural network inference on encrypted data T van Elsloo, G Patrini, H Ivey-Law arXiv preprint arXiv:1904.12840, 2019 | 10 | 2019 |
Learning with transformed data R Nock, G Patrini, T Caetano US Patent App. 15/521,441, 2017 | 9 | 2017 |
Fast Learning from Distributed Datasets without Entity Matching G Patrini, R Nock, S Hardy, T Caetano IJCAI 2016, 2016 | 8 | 2016 |
Privacy-preserving entity resolution and logistic regression on encrypted data M Djatmiko, S Hardy, W Henecka, H Ivey-Law, M Ott, G Patrini, G Smith, ... | 6 | 2017 |
The State of Deepfakes: Reality Under Attack G Patrini, F Cavalli https://s3.eu-west-2.amazonaws.com/rep2018/2018-the-state-of-deepfakes.pdf …, 2018 | 5 | 2018 |
Three tools for practical differential privacy KL van der Veen, R Seggers, P Bloem, G Patrini arXiv preprint arXiv:1812.02890, 2018 | 2 | 2018 |
Learning from distributed data R Nock, G Patrini US Patent App. 15/550,302, 2018 | 1 | 2018 |
Weakly supervised learning via statistical sufficiency G Patrini The Australian National University, 2016 | 1 | 2016 |