Gerhard Rigoll
Gerhard Rigoll
Professor for Human-Machine Communication, TU München
Adresse e-mail validée de - Page d'accueil
Citée par
Citée par
Hidden Markov model-based speech emotion recognition
B Schuller, G Rigoll, M Lang
2003 IEEE International Conference on Acoustics, Speech, and Signal …, 2003
Background segmentation with feedback: The pixel-based adaptive segmenter
M Hofmann, P Tiefenbacher, G Rigoll
2012 IEEE computer society conference on computer vision and pattern …, 2012
Speech emotion recognition combining acoustic features and linguistic information in a hybrid support vector machine-belief network architecture
B Schuller, G Rigoll, M Lang
2004 IEEE international conference on acoustics, speech, and signal …, 2004
SVC2004: First international signature verification competition
DY Yeung, H Chang, Y Xiong, S George, R Kashi, T Matsumoto, G Rigoll
Biometric Authentication: First International Conference, ICBA 2004, Hong …, 2004
Cross-corpus acoustic emotion recognition: Variances and strategies
B Schuller, B Vlasenko, F Eyben, M Wöllmer, A Stuhlsatz, A Wendemuth, ...
IEEE Transactions on Affective Computing 1 (2), 119-131, 2010
A deep convolutional neural network for video sequence background subtraction
M Babaee, DT Dinh, G Rigoll
Pattern Recognition 76, 635-649, 2018
Acoustic emotion recognition: A benchmark comparison of performances
B Schuller, B Vlasenko, F Eyben, G Rigoll, A Wendemuth
2009 IEEE workshop on automatic speech recognition & understanding, 552-557, 2009
LSTM-modeling of continuous emotions in an audiovisual affect recognition framework
M Wöllmer, M Kaiser, F Eyben, B Schuller, G Rigoll
Image and Vision Computing 31 (2), 153-163, 2013
Real-time hand gesture detection and classification using convolutional neural networks
O Köpüklü, A Gunduz, N Kose, G Rigoll
2019 14th IEEE international conference on automatic face & gesture …, 2019
The TUM Gait from Audio, Image and Depth (GAID) database: Multimodal recognition of subjects and traits
M Hofmann, J Geiger, S Bachmann, B Schuller, G Rigoll
Journal of Visual Communication and Image Representation 25 (1), 195-206, 2014
Multi-view gait recognition using 3D convolutional neural networks
T Wolf, M Babaee, G Rigoll
2016 IEEE international conference on image processing (ICIP), 4165-4169, 2016
Speaker adaptation for large vocabulary speech recognition systems using speaker Markov models
G Rigoll
International Conference on Acoustics, Speech, and Signal Processing,, 5-8, 1989
Resource efficient 3d convolutional neural networks
O Kopuklu, N Kose, A Gunduz, G Rigoll
Proceedings of the IEEE/CVF international conference on computer vision …, 2019
Being bored? Recognising natural interest by extensive audiovisual integration for real-life application
B Schuller, R Müller, F Eyben, J Gast, B Hörnler, M Wöllmer, G Rigoll, ...
Image and Vision Computing 27 (12), 1760-1774, 2009
Recognition of JPEG compressed face images based on statistical methods
S Eickeler, S Müller, G Rigoll
Image and Vision Computing 18 (4), 279-287, 2000
Speaker independent emotion recognition by early fusion of acoustic and linguistic features within ensembles
B Schuller, R Müller, M Lang, G Rigoll
Combining long short-term memory and dynamic bayesian networks for incremental emotion-sensitive artificial listening
M Wöllmer, B Schuller, F Eyben, G Rigoll
IEEE Journal of selected topics in signal processing 4 (5), 867-881, 2010
Speaker independent speech emotion recognition by ensemble classification
B Schuller, S Reiter, R Muller, M Al-Hames, M Lang, G Rigoll
2005 IEEE international conference on multimedia and expo, 864-867, 2005
Gaitgraph: Graph convolutional network for skeleton-based gait recognition
T Teepe, A Khan, J Gilg, F Herzog, S Hörmann, G Rigoll
2021 IEEE international conference on image processing (ICIP), 2314-2318, 2021
High performance real-time gesture recognition using hidden markov models
G Rigoll, A Kosmala, S Eickeler
Gesture and Sign Language in Human-Computer Interaction: International …, 1998
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–20