Monte carlo gradient estimation in machine learning S Mohamed, M Rosca, M Figurnov, A Mnih Journal of Machine Learning Research 21 (132), 1-62, 2020 | 488 | 2020 |
Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context M Reid, N Savinov, D Teplyashin, D Lepikhin, T Lillicrap, J Alayrac, ... arXiv preprint arXiv:2403.05530, 2024 | 377 | 2024 |
Variational approaches for auto-encoding generative adversarial networks M Rosca, B Lakshminarayanan, D Warde-Farley, S Mohamed arXiv preprint arXiv:1706.04987, 2017 | 329 | 2017 |
Many paths to equilibrium: GANs do not need to decrease a divergence at every step W Fedus, M Rosca, B Lakshminarayanan, AM Dai, S Mohamed, ... arXiv preprint arXiv:1710.08446, 2017 | 258 | 2017 |
Deep compressed sensing Y Wu, M Rosca, T Lillicrap International Conference on Machine Learning, 6850-6860, 2019 | 191 | 2019 |
Distribution matching in variational inference M Rosca, B Lakshminarayanan, S Mohamed arXiv preprint arXiv:1802.06847, 2018 | 113 | 2018 |
Training language gans from scratch C de Masson d'Autume, S Mohamed, M Rosca, J Rae Advances in Neural Information Processing Systems 32, 2019 | 85 | 2019 |
Sequence-to-sequence neural network models for transliteration M Rosca, T Breuel arXiv preprint arXiv:1610.09565, 2016 | 67 | 2016 |
Spectral normalisation for deep reinforcement learning: an optimisation perspective F Gogianu, T Berariu, MC Rosca, C Clopath, L Busoniu, R Pascanu International Conference on Machine Learning, 3734-3744, 2021 | 50 | 2021 |
A case for new neural network smoothness constraints M Rosca, T Weber, A Gretton, S Mohamed PMLR, 2020 | 49 | 2020 |
Optax: composable gradient transformation and optimisation M Hessel, D Budden, F Viola, M Rosca, E Sezener, T Hennigan JAX, http://github. com/deepmind/optax (last access: 4 July 2023), version 0.0 1, 2020 | 49 | 2020 |
Learning implicit generative models with the method of learned moments S Ravuri, S Mohamed, M Rosca, O Vinyals International conference on machine learning, 4314-4323, 2018 | 30 | 2018 |
Optax: composable gradient transformation and optimisation, in jax!, 2020 M Hessel, D Budden, F Viola, M Rosca, E Sezener, T Hennigan URL http://github. com/deepmind/optax 16, 2010 | 29 | 2010 |
Why neural networks find simple solutions: The many regularizers of geometric complexity B Dherin, M Munn, M Rosca, D Barrett Advances in Neural Information Processing Systems 35, 2333-2349, 2022 | 27 | 2022 |
Optax: composable gradient transformation and optimisation, in jax M Hessel, D Budden, F Viola, M Rosca, E Sezener, T Hennigan Github. http://github. com/google/jax, 2020 | 17 | 2020 |
Discretization drift in two-player games MC Rosca, Y Wu, B Dherin, D Barrett International Conference on Machine Learning, 9064-9074, 2021 | 13 | 2021 |
Compressed sensing using neural networks Y Wu, TP Lillicrap, M Rosca US Patent 12,032,523, 2024 | 5 | 2024 |
On a continuous time model of gradient descent dynamics and instability in deep learning M Rosca, Y Wu, C Qin, B Dherin arXiv preprint arXiv:2302.01952, 2023 | 5 | 2023 |
Measure-valued derivatives for approximate bayesian inference M Rosca, M Figurnov, S Mohamed, A Mnih NeurIPS Workshop on Approximate Bayesian Inference, 2019 | 4 | 2019 |
Implicit regularisation in stochastic gradient descent: from single-objective to two-player games M Rosca, MP Deisenroth arXiv preprint arXiv:2307.05789, 2023 | 3 | 2023 |