Qiaolin Ye
Qiaolin Ye
Professor,Nanjing Forestry University
Adresse e-mail validée de
Citée par
Citée par
Recursive projection twin support vector machine via within-class variance minimization
X Chen, J Yang, Q Ye, J Liang
Pattern Recognition 44 (10-11), 2643-2655, 2011
L1-norm distance linear discriminant analysis based on an effective iterative algorithm
Q Ye, J Yang, F Liu, C Zhao, N Ye, T Yin
IEEE Transactions on Circuits and Systems for Video Technology, 2018
Multiview learning with robust double-sided twin SVM
Q Ye, P Huang, Z Zhang, Y Zheng, L Fu, W Yang
IEEE transactions on Cybernetics 52 (12), 12745-12758, 2021
Nonpeaked discriminant analysis for data representation
Q Ye, Z Li, L Fu, Z Zhang, W Yang, G Yang
IEEE transactions on neural networks and learning systems 30 (12), 3818-3832, 2019
Learning Robust Discriminant Subspace Based on Joint L₂,- and L₂,-Norm Distance Metrics
L Fu, Z Li, Q Ye, H Yin, Q Liu, X Chen, X Fan, W Yang, G Yang
IEEE transactions on neural networks and learning systems 33 (1), 130-144, 2020
L1-Norm Distance Minimization-Based Fast Robust Twin Support Vector -Plane Clustering
Q Ye, H Zhao, Z Li, X Yang, S Gao, T Yin, N Ye
IEEE transactions on neural networks and learning systems 29 (9), 4494-4503, 2017
Least squares twin bounded support vector machines based on L1-norm distance metric for classification
H Yan, Q Ye, T Zhang, DJ Yu, X Yuan, Y Xu, L Fu
Pattern recognition 74, 434-447, 2018
Weighted twin support vector machines with local information and its application
Q Ye, C Zhao, S Gao, H Zheng
Neural Networks 35, 31-39, 2012
Recursive robust least squares support vector regression based on maximum correntropy criterion
X Chen, J Yang, J Liang, Q Ye
Neurocomputing 97, 63-73, 2012
1-Norm least squares twin support vector machines
S Gao, Q Ye, N Ye
Neurocomputing 74 (17), 3590-3597, 2011
Multi-weight vector projection support vector machines
Q Ye, C Zhao, N Ye, Y Chen
Pattern Recognition Letters 31 (13), 2006-2011, 2010
Smooth twin support vector regression
X Chen, J Yang, J Liang, Q Ye
Neural Computing and Applications 21, 505-513, 2012
Analysis of the complete mitochondrial genome sequence of the diploid cotton Gossypium raimondii by comparative genomics approaches
C Bi, AH Paterson, X Wang, Y Xu, D Wu, Y Qu, A Jiang, Q Ye, N Ye
BioMed Research International 2016, 2016
Lp-and Ls-norm distance based robust linear discriminant analysis
Q Ye, L Fu, Z Zhang, H Zhao, M Naiem
Neural Networks 105, 393-404, 2018
Organellar genome assembly methods and comparative analysis of horticultural plants
X Wang, F Cheng, D Rohlsen, C Bi, C Wang, Y Xu, S Wei, Q Ye, T Yin, ...
Horticulture research 5, 2018
Recurrent thrifty attention network for remote sensing scene recognition
L Fu, D Zhang, Q Ye
IEEE Transactions on Geoscience and Remote Sensing 59 (10), 8257-8268, 2020
Assembly and comparative analysis of complete mitochondrial genome sequence of an economic plant Salix suchowensis
N Ye, X Wang, J Li, C Bi, Y Xu, D Wu, Q Ye
PeerJ 5, e3148, 2017
Robust blood pressure estimation using an RGB camera
X Fan, Q Ye, X Yang, SD Choudhury
Journal of Ambient Intelligence and Humanized Computing 11, 4329-4336, 2020
Robust capped L1-norm twin support vector machine
C Wang, Q Ye, P Luo, N Ye, L Fu
Neural Networks 114, 47-59, 2019
Localized twin SVM via convex minimization
Q Ye, C Zhao, N Ye, X Chen
Neurocomputing 74 (4), 580-587, 2011
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–20