Striving for simplicity: The all convolutional net JT Springenberg, A Dosovitskiy, T Brox, M Riedmiller arXiv preprint arXiv:1412.6806, 2014 | 2810 | 2014 |
Auto-sklearn: efficient and robust automated machine learning M Feurer, A Klein, K Eggensperger, JT Springenberg, M Blum, F Hutter Automated Machine Learning, 113-134, 2019 | 1071 | 2019 |
Deep learning with convolutional neural networks for EEG decoding and visualization RT Schirrmeister, JT Springenberg, LDJ Fiederer, M Glasstetter, ... Human brain mapping 38 (11), 5391-5420, 2017 | 774 | 2017 |
Learning to generate chairs with convolutional neural networks A Dosovitskiy, J Tobias Springenberg, T Brox Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2015 | 658 | 2015 |
Unsupervised and semi-supervised learning with categorical generative adversarial networks JT Springenberg arXiv preprint arXiv:1511.06390, 2015 | 564 | 2015 |
Discriminative unsupervised feature learning with convolutional neural networks A Dosovitskiy, JT Springenberg, M Riedmiller, T Brox NIPS 2 (4), 2014 | 555 | 2014 |
Multimodal deep learning for robust RGB-D object recognition A Eitel, JT Springenberg, L Spinello, M Riedmiller, W Burgard 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems …, 2015 | 535 | 2015 |
Embed to control: A locally linear latent dynamics model for control from raw images M Watter, JT Springenberg, J Boedecker, M Riedmiller arXiv preprint arXiv:1506.07365, 2015 | 481 | 2015 |
Speeding up automatic hyperparameter optimization of deep neural networks by extrapolation of learning curves T Domhan, JT Springenberg, F Hutter Twenty-fourth international joint conference on artificial intelligence, 2015 | 369 | 2015 |
Discriminative unsupervised feature learning with exemplar convolutional neural networks A Dosovitskiy, P Fischer, JT Springenberg, M Riedmiller, T Brox IEEE transactions on pattern analysis and machine intelligence 38 (9), 1734-1747, 2015 | 315 | 2015 |
Initializing bayesian hyperparameter optimization via meta-learning M Feurer, J Springenberg, F Hutter Proceedings of the AAAI Conference on Artificial Intelligence 29 (1), 2015 | 267 | 2015 |
A learned feature descriptor for object recognition in rgb-d data M Blum, JT Springenberg, J Wülfing, M Riedmiller 2012 IEEE International Conference on Robotics and Automation, 1298-1303, 2012 | 232 | 2012 |
Bayesian optimization with robust Bayesian neural networks JT Springenberg, A Klein, S Falkner, F Hutter Proceedings of the 30th International Conference on Neural Information …, 2016 | 208 | 2016 |
Graph networks as learnable physics engines for inference and control A Sanchez-Gonzalez, N Heess, JT Springenberg, J Merel, M Riedmiller, ... International Conference on Machine Learning, 4470-4479, 2018 | 206 | 2018 |
Learning by playing solving sparse reward tasks from scratch M Riedmiller, R Hafner, T Lampe, M Neunert, J Degrave, T Wiele, V Mnih, ... International Conference on Machine Learning, 4344-4353, 2018 | 186 | 2018 |
Learning to generate chairs, tables and cars with convolutional networks A Dosovitskiy, JT Springenberg, M Tatarchenko, T Brox IEEE transactions on pattern analysis and machine intelligence 39 (4), 692-705, 2016 | 170 | 2016 |
Maximum a posteriori policy optimisation A Abdolmaleki, JT Springenberg, Y Tassa, R Munos, N Heess, ... arXiv preprint arXiv:1806.06920, 2018 | 163 | 2018 |
Deep reinforcement learning with successor features for navigation across similar environments J Zhang, JT Springenberg, J Boedecker, W Burgard 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems …, 2017 | 155 | 2017 |
Towards automatically-tuned neural networks H Mendoza, A Klein, M Feurer, JT Springenberg, F Hutter Workshop on Automatic Machine Learning, 58-65, 2016 | 147 | 2016 |
Learning an embedding space for transferable robot skills K Hausman, JT Springenberg, Z Wang, N Heess, M Riedmiller International Conference on Learning Representations, 2018 | 120 | 2018 |