Fokker–Planck–Kolmogorov Equations VI Bogachev, NV Krylov, M Röckner, SV Shaposhnikov American Mathematical Society, 2022 | 262 | 2022 |
Distances between transition probabilities of diffusions and applications to nonlinear Fokker–Planck–Kolmogorov equations VI Bogachev, M Röckner, SV Shaposhnikov Journal of Functional Analysis 271 (5), 1262-1300, 2016 | 47 | 2016 |
Global regularity and estimates for solutions of parabolic equations VI Bogachev, M Röckner, SV Shaposhnikov Teoriya Veroyatnostei i ee Primeneniya 50 (4), 652-674, 2005 | 44* | 2005 |
On uniqueness problems related to elliptic equations for measures VI Bogachev, M Röckner, SV Shaposhnikov Journal of Mathematical Sciences 176 (6), 759-773, 2011 | 43 | 2011 |
Estimates of densities of stationary distributions and transition probabilities of diffusion processes VI Bogachev, M Röckner, SV Shaposhnikov Theory of Probability & Its Applications 52 (2), 209-236, 2008 | 42 | 2008 |
On uniqueness problems related to the Fokker-Planck-Kolmogorov equation for measures. V Bogachev, M Röckner, S Shaposhnikov Journal of Mathematical Sciences 179 (1), 2011 | 37 | 2011 |
On uniqueness of solutions to nonlinear Fokker–Planck–Kolmogorov equations OA Manita, MS Romanov, SV Shaposhnikov Nonlinear Analysis 128, 199-226, 2015 | 30 | 2015 |
On positive and probability solutions to the stationary Fokker-Planck-Kolmogorov equation VI Bogachev, M Röckner, SV Shaposhnikov Doklady Mathematics 85 (3), 350-354, 2012 | 30 | 2012 |
On nonuniqueness of solutions to elliptic equations for probability measures SV Shaposhnikov Journal of Functional Analysis 254 (10), 2690-2705, 2008 | 30 | 2008 |
Global regularity and estimates for solutions of parabolic equations VI Bogachev, M Röckner, SV Shaposhnikov Teoriya Veroyatnostei i ee Primeneniya 50 (4), 652-674, 2005 | 29 | 2005 |
Nonlinear parabolic equations for measures O Manita, S Shaposhnikov St. Petersburg Mathematical Journal 25 (1), 43-62, 2014 | 28 | 2014 |
Global regularity and bounds for solutions of parabolic equations for probability measures VI Bogachev, M Rockner, SV Shaposhnikov Theory of Probability & Its Applications 50 (4), 561-581, 2006 | 22 | 2006 |
On the Ambrosio–Figalli–Trevisan superposition principle for probability solutions to Fokker–Planck–Kolmogorov equations VI Bogachev, M Röckner, SV Shaposhnikov Journal of Dynamics and Differential Equations 33 (2), 715-739, 2021 | 21 | 2021 |
On the uniqueness of solutions to continuity equations VI Bogachev, G Da Prato, M Röckner, SV Shaposhnikov Journal of Differential Equations 259 (8), 3854-3873, 2015 | 21 | 2015 |
An analytic approach to infinite-dimensional continuity and Fokker-Planck-Kolmogorov equations VI Bogachev, G Da Prato, M Röckner, SV Shaposhnikov arXiv preprint arXiv:1305.7348, 2013 | 21 | 2013 |
Integrability and continuity of solutions to double divergence form equations VI Bogachev, SV Shaposhnikov Annali di Matematica Pura ed Applicata (1923-) 196 (5), 1609-1635, 2017 | 20 | 2017 |
On the Cauchy problem for Fokker–Planck–Kolmogorov equations with potential terms on arbitrary domains OA Manita, SV Shaposhnikov Journal of Dynamics and Differential Equations 28 (2), 493-518, 2016 | 20 | 2016 |
On uniqueness of solutions to the Cauchy problem for degenerate Fokker–Planck–Kolmogorov equations VI Bogachev, M Röckner, SV Shaposhnikov Journal of Evolution Equations 13 (3), 577-593, 2013 | 20 | 2013 |
Nonlinear evolution and transport equations for measures VI Bogachev, M Röckner, SV Shaposhnikov Doklady Mathematics 80 (3), 785-789, 2009 | 19 | 2009 |
On the uniqueness of integrable and probability solutions to the Cauchy problem for the Fokker-Planck-Kolmogorov equations SV Shaposhnikov Doklady Mathematics 84 (1), 565-570, 2011 | 17 | 2011 |