Suivre
Gabriele Corso
Gabriele Corso
PhD Student, MIT
Adresse e-mail validée de mit.edu - Page d'accueil
Titre
Citée par
Citée par
Année
Principal Neighbourhood Aggregation for Graph Nets
G Corso, L Cavalleri, D Beaini, P Liò, P Veličković
Conference on Neural Information Processing Systems (NeurIPS 2020), 2020
7562020
DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking
G Corso, H Stärk, B Jing, R Barzilay, T Jaakkola
International Conference on Learning Representations (ICLR 2023), 2023
4572023
Torsional Diffusion for Molecular Conformer Generation
B Jing*, G Corso*, J Chang, R Barzilay, TS Jaakkola
Conference on Neural Information Processing Systems (NeurIPS 2022), 2022
2612022
3D Infomax improves GNNs for Molecular Property Prediction
H Stärk, D Beaini, G Corso, P Tossou, C Dallago, S Günnemann, P Liò
International Conference on Machine Learning (ICML 2022), 2022
2312022
Directional Graph Networks
D Beaini, S Passaro, V Létourneau, WL Hamilton, G Corso, P Liò
International Conference on Machine Learning (ICML 2021), 2021
2002021
Subspace Diffusion Generative Models
B Jing*, G Corso*, R Berlinghieri, T Jaakkola
European Conference on Computer Vision (ECCV 2022), 2022
772022
EigenFold: Generative Protein Structure Prediction with Diffusion Models
B Jing, E Erives, P Pao-Huang, G Corso, B Berger, T Jaakkola
arXiv preprint arXiv:2304.02198, 2023
632023
DiffDock-PP: Rigid protein-protein docking with diffusion models
MA Ketata, C Laue, R Mammadov, H Stärk, M Wu, G Corso, C Marquet, ...
arXiv preprint arXiv:2304.03889, 2023
412023
Graph Neural Networks
G Corso, H Stark, S Jegelka, T Jaakkola, R Barzilay
Nature Reviews Methods Primers 4 (1), 17, 2024
382024
Neural Distance Embeddings for Biological Sequences
G Corso, R Ying, M Pándy, P Veličković, J Leskovec, P Liò
Conference on Neural Information Processing Systems (NeurIPS 2021), 2021
382021
Dirichlet Flow Matching with Applications to DNA Sequence Design
H Stark, B Jing, C Wang, G Corso, B Berger, R Barzilay, T Jaakkola
Forty-first International Conference on Machine Learning (ICML 2024), 2024
272024
Deep Confident Steps to New Pockets: Strategies for Docking Generalization
G Corso, A Deng, B Fry, N Polizzi, R Barzilay, T Jaakkola
International Conference on Learning Representations (ICLR 2024), 2024
19*2024
Particle Guidance: non-IID Diverse Sampling with Diffusion Models
G Corso, Y Xu, V De Bortoli, R Barzilay, T Jaakkola
International Conference on Learning Representations (ICLR 2024), 2024
182024
Diffusion Models in Protein Structure and Docking
J Yim, H Stärk, G Corso, B Jing, R Barzilay, TS Jaakkola
Wiley Interdisciplinary Reviews: Computational Molecular Science 14 (2), e1711, 2024
162024
Learning Graph Search Heuristics
M Pándy, R Ying, G Corso, P Velickovic, J Leskovec, P Liò
Learning on Graphs Conference (LoG 2022), 2022
142022
DiffDock-Pocket: Diffusion for Pocket-level Docking with Sidechain Flexibility
M Plainer, M Toth, S Dobers, H Stark, G Corso, C Marquet, R Barzilay
NeurIPS AI4D3 workshop, 2023
72023
Graph Anisotropic Diffusion
AAA Elhag, G Corso, H Stärk, MM Bronstein
arXiv preprint arXiv:2205.00354, 2022
7*2022
DisCo-Diff: Enhancing Continuous Diffusion Models with Discrete Latents
Y Xu, G Corso, T Jaakkola, A Vahdat, K Kreis
Forty-first International Conference on Machine Learning (ICML 2024), 2024
62024
Modeling Molecular Structures with Intrinsic Diffusion Models
G Corso
Massachusetts Institute of Technology, 2023
62023
PLINDER: The protein-ligand interactions dataset and evaluation resource
J Durairaj, Y Adeshina, Z Cao, X Zhang, V Oleinikovas, T Duignan, ...
bioRxiv, 2024.07. 17.603955, 2024
32024
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–20