Théophile CHAUMONT-FRELET
Théophile CHAUMONT-FRELET
Verified email at inria.fr - Homepage
Title
Cited by
Cited by
Year
Stability analysis of heterogeneous Helmholtz problems and finite element solution based on propagation media approximation
H Barucq, T Chaumont-Frelet, C Gout
Mathematics of Computation 86 (307), 2129-2157, 2017
342017
High-frequency behaviour of corner singularities in Helmholtz problems
T Chaumont-Frelet, S Nicaise
ESAIM: Mathematical Modelling and Numerical Analysis 52 (5), 1803-1845, 2018
232018
Wavenumber explicit convergence analysis for finite element discretizations of general wave propagation problems
T Chaumont-Frelet, S Nicaise
IMA Journal of Numerical Analysis 40 (2), 1503-1543, 2020
212020
Finite element approximation of Helmholtz problems with application to seismic wave propagation
T Chaumont-Frelet
PhD thesis, Rouen, INSA, 2015. HAL Id: tel-01246244. Available at https …, 0
20*
On high order methods for the heterogeneous Helmholtz equation
T Chaumont-Frelet
Computers & Mathematics with Applications 72 (9), 2203-2225, 2016
152016
Finite element approximation of electromagnetic fields using nonfitting meshes for Geophysics
T Chaumont-Frelet, S Nicaise, D Pardo
SIAM Journal on Numerical Analysis 56 (4), 2288-2321, 2018
72018
A painless automatic hp-adaptive strategy for elliptic problems
V Darrigrand, D Pardo, T Chaumont-Frelet, I Gómez-Revuelto, ...
Finite Elements in Analysis and Design 178, 103424, 2020
62020
A multiscale hybrid-mixed method for the Helmholtz equation in heterogeneous domains
T Chaumont-Frelet, F Valentin
SIAM Journal on Numerical Analysis 58 (2), 1029-1067, 2020
62020
Finite element simulations of logging-while-drilling and extra-deep azimuthal resistivity measurements using non-fitting grids
T Chaumont-Frelet, D Pardo, A Rodriguez-Rozas
Computational Geosciences, 2018
62018
Upscaling for the Laplace problem using a discontinuous Galerkin method
H Barucq, T Chaumont-Frelet, J Diaz, V Péron
Journal of Computational and Applied Mathematics 240, 192-203, 2013
62013
Polynomial-degree-robust -stability of discrete minimization in a tetrahedron
T Chaumont-Frelet, A Ern, M Vohralík
Comptes Rendus. Mathématique 358 (9-10), 1101-1110, 2020
52020
On the derivation of guaranteed and p-robust a posteriori error estimates for the Helmholtz equation
T Chaumont-Frelet, A Ern, M Vohralík
Numerische Mathematik, 1-49, 2021
42021
Uniform a priori estimates for elliptic problems with impedance boundary conditions
T Chaumont-Frelet, S Nicaise, J Tomezyk
Communications on Pure & Applied Analysis 19 (5), 2445, 2020
42020
Mixed finite element discretizations of acoustic Helmholtz problems with high wavenumbers
T Chaumont-Frelet
Calcolo 56 (4), 1-27, 2019
42019
Stable broken H (curl) polynomial extensions and p-robust quasi-equilibrated a posteriori estimators for Maxwell's equations
T Chaumont-Frelet, A Ern, M Vohralík
arXiv preprint arXiv:2005.14537, 2020
32020
Wavenumber explicit convergence analysis for finite element discretizations of time-harmonic wave propagation problems with perfectly matched layers
T Chaumont-Frelet, D Gallistl, S Nicaise, J Tomezyk
32018
Frequency-explicit a posteriori error estimates for finite element discretizations of Maxwell's equations
T Chaumont-Frelet, P Vega
arXiv preprint arXiv:2009.09204, 2020
22020
Stable broken H (curl) polynomial extensions and p-robust a posteriori error estimates by broken patchwise equilibration for the curl-curl problem
T Chaumont-Frelet, A Ern, M Vohralík
22020
Wavenumber explicit convergence analysis for finite element discretizations of time-harmonic wave propagation problems with perfectly matched layers
D Gallistl, T Chaumont-Frelet, S Nicaise, J Tomezyk
HAL preprint, 2018
22018
Bridging the multiscale hybrid-mixed and multiscale hybrid high-order methods
T Chaumont-Frelet, A Ern, S Lemaire, F Valentin
arXiv preprint arXiv:2106.01693, 2021
12021
The system can't perform the operation now. Try again later.
Articles 1–20