John Taylor
John Taylor
Professor of Electronic and Electrical Engineering University of Bath
Adresse e-mail validée de
Citée par
Citée par
Pyroelectric materials and devices for energy harvesting applications
CR Bowen, J Taylor, E LeBoulbar, D Zabek, A Chauhan, R Vaish
Energy & Environmental Science 7 (12), 3836-3856, 2014
Modelling and fabrication of porous sandwich layer barium titanate with improved piezoelectric energy harvesting figures of merit
JI Roscow, RWC Lewis, J Taylor, CR Bowen
Acta Materialia 128, 207-217, 2017
Micropatterning of flexible and free standing polyvinylidene difluoride (PVDF) films for enhanced pyroelectric energy transformation
D Zabek, J Taylor, EL Boulbar, CR Bowen
Advanced Energy Materials 5 (8), 1401891, 2015
Multiple-electrode nerve cuffs for low-velocity and velocity-selective neural recording
J Taylor, N Donaldson, J Winter
Medical and Biological Engineering and Computing 42, 634-643, 2004
Design of a low-noise preamplifier for nerve cuff electrode recording
R Rieger, J Taylor, A Demosthenous, N Donaldson, PJ Langlois
IEEE Journal of Solid-State Circuits 38 (8), 1373-1379, 2003
Porous ferroelectrics for energy harvesting applications
J Roscow, Y Zhang, J Taylor, CR Bowen
The European Physical Journal Special Topics 224 (14), 2949-2966, 2015
A modified figure of merit for pyroelectric energy harvesting
CR Bowen, J Taylor, E Le Boulbar, D Zabek, VY Topolov
Materials Letters 138, 243-246, 2015
Freeze cast porous barium titanate for enhanced piezoelectric energy harvesting
JI Roscow, Y Zhang, MJ Kraśny, RWC Lewis, J Taylor, CR Bowen
Journal of Physics D: Applied Physics 51 (22), 225301, 2018
AC electrical properties of TiO2 and Magnéli phases, TinO2n− 1
D Regonini, V Adamaki, CR Bowen, SR Pennock, J Taylor, ACE Dent
Solid State Ionics 229, 38-44, 2012
A CMOS analog winner-take-all network for large-scale applications
A Demosthenous, S Smedley, J Taylor
IEEE Transactions on Circuits and Systems I: Fundamental Theory and …, 1998
A 230-nW 10-s time constant CMOS integrator for an adaptive nerve signal amplifier
R Rieger, A Demosthenous, J Taylor
IEEE Journal of Solid-State Circuits 39 (11), 1968-1975, 2004
Very low-noise ENG amplifier system using CMOS technology
R Rieger, M Schuettler, D Pal, C Clarke, P Langlois, J Taylor, ...
IEEE Transactions on Neural Systems and Rehabilitation Engineering 14 (4 …, 2006
Manufacture and characterization of porous ferroelectrics for piezoelectric energy harvesting applications
JI Roscow, J Taylor, CR Bowen
Ferroelectrics 498 (1), 40-46, 2016
An adaptive sampling system for sensor nodes in body area networks
R Rieger, JT Taylor
IEEE Transactions on Neural Systems and Rehabilitation Engineering 17 (2 …, 2009
An improved configuration for the reduction of EMG in electrode cuff recordings: a theoretical approach
M Rahal, J Winter, J Taylor, N Donaldson
IEEE transactions on biomedical engineering 47 (9), 1281-1284, 2000
Fibre-selective recording from the peripheral nerves of frogs using a multi-electrode cuff
M Schuettler, N Donaldson, V Seetohul, J Taylor
Journal of neural engineering 10 (3), 036016, 2013
Commercialisation of CMOS integrated circuit technology in multi-electrode arrays for neuroscience and cell-based biosensors
AHD Graham, J Robbins, CR Bowen, J Taylor
Sensors 11, 4943-4971, 2011
A 100-Mb/s 2.8-V CMOS current-mode analog Viterbi decoder
A Demosthenous, J Taylor
IEEE Journal of Solid-State Circuits 37 (7), 904-910, 2002
CRC handbook of electrical filters
J Taylor, Q Huang
CRC Press, 2020
Noise and selectivity of velocity-selective multi-electrode nerve cuffs
N Donaldson, R Rieger, M Schuettler, J Taylor
Medical & biological engineering & computing 46, 1005-1018, 2008
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–20