Sixty years of Bernoulli convolutions Y Peres, W Schlag, B Solomyak Fractal geometry and stochastics II, 39-65, 2000 | 352 | 2000 |

Time decay for solutions of Schrödinger equations with rough and time-dependent potentials I Rodnianski, W Schlag Inventiones mathematicae 155 (3), 451-513, 2004 | 309 | 2004 |

Classical and Multilinear Harmonic Analysis: Volume 1 C Muscalu, W Schlag Cambridge University Press, 2013 | 278 | 2013 |

Dispersive estimates for Schrödinger operators in dimensions one and three M Goldberg, W Schlag Communications in mathematical physics 251 (1), 157-178, 2004 | 215 | 2004 |

Renormalization and blow up for charge one equivariant critical wave maps J Krieger, W Schlag, D Tataru Inventiones mathematicae 171 (3), 543-615, 2008 | 203 | 2008 |

Hölder continuity of the integrated density of states for quasi-periodic Schrödinger equations and averages of shifts of subharmonic functions M Goldstein, W Schlag Annals of Mathematics, 155-203, 2001 | 198 | 2001 |

Dispersive estimates for Schrödinger operators: a survey W Schlag Mathematical aspects of nonlinear dispersive equations 163, 255-285, 2007 | 194 | 2007 |

Dispersive estimates for Schrödinger operators: a survey W Schlag Mathematical aspects of nonlinear dispersive equations 163, 255-285, 2007 | 194 | 2007 |

Smoothness of projections, Bernoulli convolutions, and the dimension of exceptions Y Peres, W Schlag Duke Mathematical Journal 102 (2), 193-252, 2000 | 188 | 2000 |

Slow blow-up solutions for the critical focusing semilinear wave equation J Krieger, W Schlag, D Tataru Duke Mathematical Journal 147 (1), 1-53, 2009 | 156 | 2009 |

Invariant manifolds and dispersive Hamiltonian evolution equations K Nakanishi, W Schlag European Mathematical Society, 2011 | 123 | 2011 |

Asymptotic stability of N-soliton states of NLS I Rodnianski, W Schlag, A Soffer arXiv preprint math/0309114, 2003 | 107 | 2003 |

Concentration compactness for critical wave maps J Krieger, W Schlag European Mathematical Society, 2012 | 106 | 2012 |

Dispersive estimates for Schr\"{o} dinger operators in the presence of a resonance and/or an eigenvalue at zero energy in dimension three: I B Erdogan, W Schlag arXiv preprint math/0410431, 2004 | 106* | 2004 |

On the focusing critical semi-linear wave equation J Krieger, W Schlag American journal of mathematics 129 (3), 843-913, 2007 | 105 | 2007 |

Dispersive estimates for Schrödinger operators in dimension two W Schlag Communications in mathematical physics 257 (1), 87-117, 2005 | 105 | 2005 |

Stable manifolds for all monic supercritical focusing nonlinear Schrödinger equations in one dimension J Krieger, W Schlag Journal of the American Mathematical Society 19 (4), 815-920, 2006 | 98 | 2006 |

Anderson Localization for Schrödinger Operators on ℤ with Potentials Given by the Skew–Shift J Bourgain, M Goldstein, W Schlag Communications in Mathematical Physics 220 (3), 583-621, 2001 | 96 | 2001 |

Anderson localization for Schrödinger operators on Z2 with quasi-periodic potential J Bourgain, M Goldstein, W Schlag Acta mathematica 188 (1), 41-86, 2002 | 94 | 2002 |

Dispersive analysis of charge transfer models I Rodnianski, W Schlag, A Soffer Communications on Pure and Applied Mathematics: A Journal Issued by the …, 2005 | 92 | 2005 |