Sheng Zou
Cited by
Cited by
Hyperspectral unmixing with endmember variability using partial membership latent dirichlet allocation
S Zou, A Zare
2017 IEEE International Conference on Acoustics, Speech and Signal …, 2017
Hybrid data-driven physics model-based framework for enhanced cyber-physical smart grid security
C Ruben, S Dhulipala, K Nagaraj, S Zou, A Starke, A Bretas, A Zare, ...
IET Smart Grid 3 (4), 445-453, 2020
Holographic Λ (t) CDM model in a non-flat universe
JF Zhang, YY Li, Y Liu, S Zou, X Zhang
The European Physical Journal C 72 (7), 1-8, 2012
Ensemble CorrDet with adaptive statistics for bad data detection
K Nagaraj, S Zou, C Ruben, S Dhulipala, A Starke, A Bretas, A Zare, ...
IET Smart Grid 3 (5), 572-580, 2020
Peanut maturity classification using hyperspectral imagery
S Zou, YC Tseng, A Zare, DL Rowland, BL Tillman, SC Yoon
biosystems engineering 188, 165-177, 2019
Hyperspectral tree crown classification using the multiple instance adaptive cosine estimator
S Zou, P Gader, A Zare
PeerJ 7, e6405, 2019
Hyperspectral Unmixing with Endmember Variability using Semi-supervised Partial Membership Latent Dirichlet Allocation
S Zou, H Sun, A Zare
arXiv preprint arXiv:1703.06151, 2017
Instance influence estimation for hyperspectral target signature characterization using extended functions of multiple instances
S Zou, A Zare
Algorithms and Technologies for Multispectral, Hyperspectral, and …, 2016
Semi-supervised interactive unmixing for hyperspectral image analysis
S Zou
University of Missouri-Columbia, 2016
State Estimator and Machine Learning Analysis of Residual Differences to Detect and Identify FDI and Parameter Errors in Smart Grids
K Nagaraj, N Aljohani, S Zou, C Ruben, A Bretas, A Zare, J McNair
2020 52nd North American Power Symposium (NAPS), 1-6, 2021
The system can't perform the operation now. Try again later.
Articles 1–10