Follow
Nicolas Vayatis
Nicolas Vayatis
Full Professor, Centre Borelli, Department of Mathematics, ENS Paris-Saclay
Verified email at ens-paris-saclay.fr - Homepage
Title
Cited by
Cited by
Year
Selective review of offline change point detection methods
C Truong, L Oudre, N Vayatis
Signal Processing 167, 107299, 2020
11472020
Ranking and Empirical Minimization of U-statistics
S Clémençon, G Lugosi, N Vayatis
4302008
On the Bayes-risk consistency of regularized boosting methods
G Lugosi, N Vayatis
The Annals of statistics 32 (1), 30-55, 2004
2932004
Parallel Gaussian process optimization with upper confidence bound and pure exploration
E Contal, D Buffoni, A Robicquet, N Vayatis
Joint European Conference on Machine Learning and Knowledge Discovery in …, 2013
2282013
Estimation of simultaneously sparse and low rank matrices
E Richard, PA Savalle, N Vayatis
Proceedings of ICML'12, 2012
2232012
On the rate of convergence of regularized boosting classifiers
G Blanchard, G Lugosi, N Vayatis
Journal of Machine Learning Research 4 (Oct), 861-894, 2003
1572003
A review of center of pressure (COP) variables to quantify standing balance in elderly people: Algorithms and open‐access code
F Quijoux, A Nicolaï, I Chairi, I Bargiotas, D Ricard, A Yelnik, L Oudre, ...
Physiological reports 9 (22), e15067, 2021
1372021
Global optimization of Lipschitz functions
C Malherbe, N Vayatis
International Conference on Machine Learning, 2314-2323, 2017
1372017
Ranking the best instances
S Clémençon, N Vayatis
The Journal of Machine Learning Research 8, 2671-2699, 2007
1332007
Gaussian process optimization with mutual information
E Contal, V Perchet, N Vayatis
International Conference on Machine Learning, 253-261, 2014
1142014
Recursive aggregation of estimators by the mirror descent algorithm with averaging
AB Juditsky, AV Nazin, AB Tsybakov, N Vayatis
Problems of Information Transmission 41 (4), 368-384, 2005
1122005
Tree-based ranking methods
S Clémençon, N Vayatis
IEEE Transactions on Information Theory 55 (9), 4316-4336, 2009
1062009
Ranking and scoring using empirical risk minimization
S Clemençon, G Lugosi, N Vayatis
International conference on computational learning theory, 1-15, 2005
1062005
Prediction and optimization of wave energy converter arrays using a machine learning approach
D Sarkar, E Contal, N Vayatis, F Dias
Renewable Energy 97, 504-517, 2016
892016
Ranking forests
S Clémençon, M Depecker, N Vayatis
The Journal of Machine Learning Research 14 (1), 39-73, 2013
732013
Can small islands protect nearby coasts from tsunamis? An active experimental design approach
TS Stefanakis, E Contal, N Vayatis, F Dias, CE Synolakis
Proceedings of the Royal Society A: Mathematical, Physical and Engineering …, 2014
532014
Nonparametric markovian learning of triggering kernels for mutually exciting and mutually inhibiting multivariate hawkes processes
R Lemonnier, N Vayatis
Machine Learning and Knowledge Discovery in Databases: European Conference …, 2014
532014
Overlaying classifiers: a practical approach to optimal scoring
S Clémençon, N Vayatis
Constructive Approximation 32, 619-648, 2010
532010
Gap-free bounds for stochastic multi-armed bandit
A Juditsky, AV Nazin, AB Tsybakov, N Vayatis
IFAC Proceedings Volumes 41 (2), 11560-11563, 2008
512008
Empirical performance maximization for linear rank statistics
S Clémençcon, N Vayatis
Advances in neural information processing systems 21, 2008
502008
The system can't perform the operation now. Try again later.
Articles 1–20