Hennequin Romain
Hennequin Romain
Lead research scientist, Deezer Research
Adresse e-mail validée de deezer.com
Titre
Citée par
Citée par
Année
Score informed audio source separation using a parametric model of non-negative spectrogram
R Hennequin, B David, R Badeau
2011 IEEE International Conference on Acoustics, Speech and Signal …, 2011
1092011
Identification of cascade of Hammerstein models for the description of nonlinearities in vibrating devices
M Rébillat, R Hennequin, E Corteel, BFG Katz
Journal of sound and vibration 330 (5), 1018-1038, 2011
832011
Singing voice detection with deep recurrent neural networks
S Leglaive, R Hennequin, R Badeau
2015 IEEE International Conference on Acoustics, Speech and Signal …, 2015
762015
NMF with time–frequency activations to model nonstationary audio events
R Hennequin, R Badeau, B David
IEEE Transactions on Audio, Speech, and Language Processing 19 (4), 744-753, 2010
732010
Time-dependent parametric and harmonic templates in non-negative matrix factorization
R Hennequin, R Badeau, B David
452010
Beta-divergence as a subclass of Bregman divergence
R Hennequin, B David, R Badeau
IEEE Signal Processing Letters 18 (2), 83-86, 2010
372010
Spleeter: A fast and state-of-the art music source separation tool with pre-trained models
R Hennequin, A Khlif, F Voituret, M Moussallam
Late-Breaking/Demo ISMIR 2019, 2019
292019
Music mood detection based on audio and lyrics with deep neural net
R Delbouys, R Hennequin, F Piccoli, J Royo-Letelier, M Moussallam
arXiv preprint arXiv:1809.07276, 2018
192018
WASABI: A two million song database project with audio and cultural metadata plus webaudio enhanced client applications
G Meseguer-Brocal, G Peeters, G Pellerin, M Buffa, E Cabrio, CF Zucker, ...
Web Audio Conference 2017–Collaborative Audio# WAC2017, 2017
172017
Speech-guided source separation using a pitch-adaptive guide signal model
R Hennequin, JJ Burred, S Maller, P Leveau
2014 IEEE International Conference on Acoustics, Speech and Signal …, 2014
162014
Prediction of harmonic distortion generated by electro-dynamic loudspeakers using cascade of Hammerstein models
M Rébillat, R Hennequin, E Corteel, B Katz
152010
Gravity-inspired graph autoencoders for directed link prediction
G Salha, S Limnios, R Hennequin, VA Tran, M Vazirgiannis
Proceedings of the 28th ACM International Conference on Information and …, 2019
122019
Keep it simple: Graph autoencoders without graph convolutional networks
G Salha, R Hennequin, M Vazirgiannis
arXiv preprint arXiv:1910.00942, 2019
122019
Codec independent lossy audio compression detection
R Hennequin, J Royo-Letelier, M Moussallam
2017 IEEE International Conference on Acoustics, Speech and Signal …, 2017
122017
Décomposition de spectrogrammes musicaux informée par des modeles de synthese spectrale. Modélisation des variations temporelles dans les éléments sonores.
R Hennequin
122011
Scale-invariant probabilistic latent component analysis
R Hennequin, R Badeau, B David
2011 IEEE Workshop on Applications of Signal Processing to Audio and …, 2011
102011
A degeneracy framework for scalable graph autoencoders
G Salha, R Hennequin, VA Tran, M Vazirgiannis
arXiv preprint arXiv:1902.08813, 2019
92019
Audio based disambiguation of music genre tags
R Hennequin, J Royo-Letelier, M Moussallam
arXiv preprint arXiv:1809.07256, 2018
92018
Introducing a simple fusion framework for audio source separation
X Jaureguiberry, G Richard, P Leveau, R Hennequin, E Vincent
2013 IEEE International Workshop on Machine Learning for Signal Processing …, 2013
92013
Singing voice separation: A study on training data
L Prétet, R Hennequin, J Royo-Letelier, A Vaglio
ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and …, 2019
82019
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–20