Jia-Jie Zhu
Jia-Jie Zhu
Max Planck Institute for Intelligent Systems
Adresse e-mail validée de tue.mpg.de - Page d'accueil
Titre
Citée par
Citée par
Année
Generative adversarial active learning
JJ Zhu, J Bento
arXiv preprint arXiv:1702.07956, 2017
872017
Deep reinforcement learning for event-triggered control
D Baumann, JJ Zhu, G Martius, S Trimpe
2018 IEEE Conference on Decision and Control (CDC), 943-950, 2018
282018
A metric for sets of trajectories that is practical and mathematically consistent
J Bento, JJ Zhu
arXiv preprint arXiv:1601.03094, 2016
132016
Control What You Can: Intrinsically Motivated Task-Planning Agent
S Blaes, MV Pogančić, JJ Zhu, G Martius
Advances in Neural Information Processing Systems, 2019, 2019
92019
Projection algorithms for nonconvex minimization with application to sparse principal component analysis
JJ Zhu, DT Phan, WW Hager
Journal of Global Optimization 65 (4), 657-676, 2016
92016
Kernel Distributionally Robust Optimization
JJ Zhu, W Jitkrittum, M Diehl, B Schölkopf
https://arxiv.org/abs/2006.06981, 2020
7*2020
Worst-Case Risk Quantification under Distributional Ambiguity using Kernel Mean Embedding in Moment Problem
JJ Zhu, W Jitkrittum, M Diehl, B Schölkopf
2020 59th IEEE Conference on Decision and Control (CDC), 3457-3463, 2020
52020
Robust Humanoid Locomotion Using Trajectory Optimization and Sample-Efficient Learning*
MH Yeganegi, M Khadiv, SAA Moosavian, JJ Zhu, A Del Prete, L Righetti
2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids …, 2019
52019
A new distribution-free concept for representing, comparing, and propagating uncertainty in dynamical systems with kernel probabilistic programming
JJ Zhu, K Muandet, M Diehl, B Schölkopf
IFAC-PapersOnLine 53 (2), 7240-7247, 2020
32020
A Kernel Mean Embedding Approach to Reducing Conservativeness in Stochastic Programming and Control
JJ Zhu, M Diehl, B Schölkopf
Proceedings of the 2nd Conference on Learning for Dynamics and Control …, 2020
32020
A decentralized multi-block ADMM for demand-side primary frequency control using local frequency measurements
J Brooks, W Hager, J Zhu
arXiv preprint arXiv:1509.08206, 2015
32015
Fast Non-Parametric Learning to Accelerate Mixed-Integer Programming for Hybrid Model Predictive Control
JJ Zhu, G Martius
IFAC-PapersOnLine 53 (2), 5239-5245, 2020
1*2020
Shallow Representation is Deep: Learning Uncertainty-aware and Worst-case Random Feature Dynamics
D Agudelo-España, Y Nemmour, B Schölkopf, JJ Zhu
arXiv preprint arXiv:2106.13066, 2021
2021
Approximate Distributionally Robust Nonlinear Optimization with Application to Model Predictive Control: A Functional Approach
Y Nemmour, B Schölkopf, JJ Zhu
Learning for Dynamics and Control, 1255-1269, 2021
2021
Distributionally Robust Trajectory Optimization Under Uncertain Dynamics via Relative-Entropy Trust Regions
H Abdulsamad, T Dorau, B Belousov, JJ Zhu, J Peters
arXiv preprint arXiv:2103.15388, 2021
2021
Adversarially Robust Kernel Smoothing
JJ Zhu, C Kouridi, Y Nemmour, B Schölkopf
arXiv preprint arXiv:2102.08474, 2021
2021
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–16