Thibaut Le Gouic
Thibaut Le Gouic
Institut de Mathématiques de Marseille, Massachusetts Institute of Technology
Adresse e-mail validée de math.cnrs.fr - Page d'accueil
TitreCitée parAnnée
Distribution’s template estimate with Wasserstein metrics
E Boissard, T Le Gouic, JM Loubes
Bernoulli 21 (2), 740-759, 2015
60*2015
On the mean speed of convergence of empirical and occupation measures in Wasserstein distance
E Boissard, T Le Gouic
Annales de l'IHP Probabilités et statistiques 50 (2), 539-563, 2014
562014
Existence and consistency of Wasserstein barycenters
T Le Gouic, JM Loubes
Probability Theory and Related Fields 168 (3-4), 901-917, 2017
482017
On the rate of convergence of empirical barycentres in metric spaces: curvature, convexity and extendible geodesics
A Ahidar-Coutrix, T Le Gouic, Q Paris
arXiv preprint arXiv:1806.02740, 2018
92018
Localisation de masse et espaces de Wasserstein
T Le Gouic
Université de Toulouse, Université de Toulouse III-Paul Sabatier, 2013
52013
Unconstrained and Curvature-Constrained Shortest-Path Distances and their Approximation
E Arias-Castro, T Le Gouic
arXiv preprint arXiv:1706.09441, 2017
32017
A note on flatness of non separable tangent cone
T Le Gouic
arXiv preprint arXiv:1906.11536, 2019
22019
Fast convergence of empirical barycenters in Alexandrov spaces and the Wasserstein space
T Le Gouic, Q Paris, P Rigollet, AJ Stromme
arXiv preprint arXiv:1908.00828, 2019
12019
A notion of stability for k-means clustering
T Le Gouic, Q Paris
arXiv preprint arXiv:1801.09419, 2018
12018
Mass localization
T Le Gouic
arXiv preprint arXiv:1506.04136, 2015
12015
Convergence rates for empirical barycenters in metric spaces: curvature, convexity and extendable geodesics
A Ahidar-Coutrix, T Le Gouic, Q Paris
Probability Theory and Related Fields, 1-46, 2019
2019
Recovering metric from full ordinal information
T Le Gouic
arXiv preprint arXiv:1506.03762, 2015
2015
Warning: this document is the first draft of the handouts for the course “Probability and Statistics”, part of the course unit MAT-3 “Mathématiques 3”. It will be improved …
A Ahidar-Coutrix, T Le Gouic, R Bourles, T Luks, V Martelli, A Roueff, ...
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–13