Joel Lehman
Titre
Citée par
Citée par
Année
Abandoning objectives: Evolution through the search for novelty alone
J Lehman, KO Stanley
Evolutionary computation 19 (2), 189-223, 2011
7352011
Exploiting open-endedness to solve problems through the search for novelty.
J Lehman, KO Stanley
ALIFE, 329-336, 2008
4842008
Deep neuroevolution: Genetic algorithms are a competitive alternative for training deep neural networks for reinforcement learning
FP Such, V Madhavan, E Conti, J Lehman, KO Stanley, J Clune
arXiv preprint arXiv:1712.06567, 2017
4462017
An intriguing failing of convolutional neural networks and the coordconv solution
R Liu, J Lehman, P Molino, FP Such, E Frank, A Sergeev, J Yosinski
arXiv preprint arXiv:1807.03247, 2018
3152018
Evolving a diversity of virtual creatures through novelty search and local competition
J Lehman, KO Stanley
Proceedings of the 13th annual conference on Genetic and evolutionary …, 2011
2802011
Designing neural networks through neuroevolution
KO Stanley, J Clune, J Lehman, R Miikkulainen
Nature Machine Intelligence 1 (1), 24-35, 2019
2322019
Improving exploration in evolution strategies for deep reinforcement learning via a population of novelty-seeking agents
E Conti, V Madhavan, FP Such, J Lehman, KO Stanley, J Clune
arXiv preprint arXiv:1712.06560, 2017
1892017
A neuroevolution approach to general atari game playing
M Hausknecht, J Lehman, R Miikkulainen, P Stone
IEEE Transactions on Computational Intelligence and AI in Games 6 (4), 355-366, 2014
1882014
Go-explore: a new approach for hard-exploration problems
A Ecoffet, J Huizinga, J Lehman, KO Stanley, J Clune
arXiv preprint arXiv:1901.10995, 2019
1582019
The surprising creativity of digital evolution: A collection of anecdotes from the evolutionary computation and artificial life research communities
J Lehman, J Clune, D Misevic, C Adami, L Altenberg, J Beaulieu, ...
Artificial life 26 (2), 274-306, 2020
1362020
Revising the evolutionary computation abstraction: minimal criteria novelty search
J Lehman, KO Stanley
Proceedings of the 12th annual conference on Genetic and evolutionary …, 2010
1252010
Efficiently evolving programs through the search for novelty
J Lehman, KO Stanley
Proceedings of the 12th annual conference on Genetic and evolutionary …, 2010
1082010
Novelty search and the problem with objectives
J Lehman, KO Stanley
Genetic programming theory and practice IX, 37-56, 2011
1002011
Why greatness cannot be planned: The myth of the objective
KO Stanley, J Lehman
Springer, 2015
952015
Paired open-ended trailblazer (poet): Endlessly generating increasingly complex and diverse learning environments and their solutions
R Wang, J Lehman, J Clune, KO Stanley
arXiv preprint arXiv:1901.01753, 2019
742019
Evolving policy geometry for scalable multiagent learning
DB D'Ambrosio, J Lehman, S Risi, KO Stanley
Proceedings of the 9th International Conference on Autonomous Agents and …, 2010
742010
Combining search-based procedural content generation and social gaming in the petalz video game
S Risi, J Lehman, D D'Ambrosio, R Hall, K Stanley
Proceedings of the AAAI Conference on Artificial Intelligence and …, 2012
722012
Effective diversity maintenance in deceptive domains
J Lehman, KO Stanley, R Miikkulainen
Proceedings of the 15th annual conference on Genetic and evolutionary …, 2013
692013
ES is more than just a traditional finite-difference approximator
J Lehman, J Chen, J Clune, KO Stanley
Proceedings of the Genetic and Evolutionary Computation Conference, 450-457, 2018
602018
Evolvability is inevitable: Increasing evolvability without the pressure to adapt
J Lehman, KO Stanley
PloS one 8 (4), e62186, 2013
592013
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–20