Suivre
Joshua A Rackers
Joshua A Rackers
Prescient Design / Genentech
Adresse e-mail validée de gene.com - Page d'accueil
Titre
Citée par
Citée par
Année
Tinker 8: software tools for molecular design
JA Rackers, Z Wang, C Lu, ML Laury, L Lagardère, MJ Schnieders, ...
Journal of chemical theory and computation 14 (10), 5273-5289, 2018
5152018
General model for treating short-range electrostatic penetration in a molecular mechanics force field
Q Wang, JA Rackers, C He, R Qi, C Narth, L Lagardere, N Gresh, ...
Journal of chemical theory and computation 11 (6), 2609-2618, 2015
1162015
An optimized charge penetration model for use with the AMOEBA force field
JA Rackers, Q Wang, C Liu, JP Piquemal, P Ren, JW Ponder
Physical Chemistry Chemical Physics 19 (1), 276-291, 2017
902017
Classical Pauli repulsion: An anisotropic, atomic multipole model
JA Rackers, JW Ponder
The Journal of chemical physics 150 (8), 2019
832019
Scalable improvement of SPME multipolar electrostatics in anisotropic polarizable molecular mechanics using a general short‐range penetration correction up to quadrupoles
C Narth, L Lagardère, É Polack, N Gresh, Q Wang, DR Bell, JA Rackers, ...
Journal of computational chemistry 37 (5), 494-506, 2016
352016
Polarizable water potential derived from a model electron density
JA Rackers, RR Silva, Z Wang, JW Ponder
Journal of chemical theory and computation 17 (11), 7056-7084, 2021
342021
Thermodynamics of ion binding and occupancy in potassium channels
Z Jing, JA Rackers, LR Pratt, C Liu, SB Rempe, P Ren
Chemical Science 12 (25), 8920-8930, 2021
312021
A physically grounded damped dispersion model with particle mesh Ewald summation
JA Rackers, C Liu, P Ren, JW Ponder
The Journal of chemical physics 149 (8), 2018
242018
A recipe for cracking the quantum scaling limit with machine learned electron densities
JA Rackers, L Tecot, M Geiger, TE Smidt
Machine Learning: Science and Technology 4 (1), 015027, 2023
232023
TINKER 8: a modular software package for molecular design and simulation
JA Rackers, ML Laury, C Lu, Z Wang, L Lagardère, JP Piquemal, P Ren, ...
J. Chem. Theory Comput. 14, 5273-5289, 2018
182018
Water in an external electric field: comparing charge distribution methods using ReaxFF simulations
JP Koski, SG Moore, RC Clay, KA O’Hearn, HM Aktulga, MA Wilson, ...
Journal of Chemical Theory and Computation 18 (1), 580-594, 2021
122021
Predicting accurate ab initio DNA electron densities with equivariant neural networks
AJ Lee, JA Rackers, WP Bricker
Biophysical Journal 121 (20), 3883-3895, 2022
92022
3D molecule generation by denoising voxel grids
PO O Pinheiro, J Rackers, J Kleinhenz, M Maser, O Mahmood, A Watkins, ...
Advances in Neural Information Processing Systems 36, 2024
62024
Accurate Hellmann–Feynman forces from density functional calculations with augmented Gaussian basis sets
S Pathak, IE López, AJ Lee, WP Bricker, RL Fernández, S Lehtola, ...
The Journal of Chemical Physics 158 (1), 2023
52023
Classical Exchange Polarization: An Anisotropic Variable Polarizability Model
MKJ Chung, Z Wang, JA Rackers, JW Ponder
The Journal of Physical Chemistry B 126 (39), 7579-7594, 2022
52022
Cracking the quantum scaling limit with machine learned electron densities
JA Rackers, L Tecot, M Geiger, TE Smidt
arXiv preprint arXiv:2201.03726, 2022
42022
Accurate hellmann-feynman forces with optimized atom-centered gaussian basis sets.
S Pathak, J Rackers, EL Ignacio, LF Rafael, AJ Lee, WP Bricker, S Lehtola
Sandia National Lab.(SNL-NM), Albuquerque, NM (United States), 2022
22022
Hierarchical learning in Euclidean neural networks
JA Rackers, P Rao
arXiv preprint arXiv:2210.04766, 2022
12022
Predicting quantum-accurate electron densities for DNA with equivariant neural networks
A Lee, J Rackers, W Bricker
2022
equivariant_electron_density
J Rackers
Sandia National Lab.(SNL-NM), Albuquerque, NM (United States), 2021
2021
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–20