Gustavo Carneiro
Gustavo Carneiro
Adresse e-mail validée de adelaide.edu.au - Page d'accueil
Titre
Citée par
Citée par
Année
Supervised learning of semantic classes for image annotation and retrieval
G Carneiro, AB Chan, PJ Moreno, N Vasconcelos
IEEE transactions on pattern analysis and machine intelligence 29 (3), 394-410, 2007
10932007
Unsupervised cnn for single view depth estimation: Geometry to the rescue
R Garg, VK Bg, G Carneiro, I Reid
European conference on computer vision, 740-756, 2016
6522016
Formulating semantic image annotation as a supervised learning problem
G Carneiro, N Vasconcelos
2005 IEEE Computer Society Conference on Computer Vision and Pattern …, 2005
2032005
Learning local image descriptors with deep siamese and triplet convolutional networks by minimising global loss functions
V Kumar BG, G Carneiro, I Reid
Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2016
1972016
Detection and measurement of fetal anatomies from ultrasound images using a constrained probabilistic boosting tree
G Carneiro, B Georgescu, S Good, D Comaniciu
IEEE transactions on medical imaging 27 (9), 1342-1355, 2008
1932008
Multi-scale phase-based local features
G Carneiro, AD Jepson
2003 IEEE Computer Society Conference on Computer Vision and Pattern …, 2003
1832003
Combining deep learning and level set for the automated segmentation of the left ventricle of the heart from cardiac cine magnetic resonance
TA Ngo, Z Lu, G Carneiro
Medical image analysis 35, 159-171, 2017
1782017
Unregistered multiview mammogram analysis with pre-trained deep learning models
G Carneiro, J Nascimento, AP Bradley
International Conference on Medical Image Computing and Computer-Assisted …, 2015
1672015
Automated mass detection in mammograms using cascaded deep learning and random forests
N Dhungel, G Carneiro, AP Bradley
2015 international conference on digital image computing: techniques and …, 2015
1402015
The segmentation of the left ventricle of the heart from ultrasound data using deep learning architectures and derivative-based search methods
G Carneiro, JC Nascimento, A Freitas
IEEE Transactions on Image Processing 21 (3), 968-982, 2011
1382011
Robust optimization for deep regression
V Belagiannis, C Rupprecht, G Carneiro, N Navab
Proceedings of the IEEE international conference on computer vision, 2830-2838, 2015
1282015
Phase-based local features
G Carneiro, AD Jepson
European Conference on Computer Vision, 282-296, 2002
1282002
An improved joint optimization of multiple level set functions for the segmentation of overlapping cervical cells
Z Lu, G Carneiro, AP Bradley
IEEE Transactions on Image Processing 24 (4), 1261-1272, 2015
1212015
A deep learning approach for the analysis of masses in mammograms with minimal user intervention
N Dhungel, G Carneiro, AP Bradley
Medical image analysis 37, 114-128, 2017
1182017
Smart mining for deep metric learning
B Harwood, V Kumar BG, G Carneiro, I Reid, T Drummond
Proceedings of the IEEE International Conference on Computer Vision, 2821-2829, 2017
1002017
Sparse flexible models of local features
G Carneiro, D Lowe
European Conference on Computer Vision, 29-43, 2006
942006
Automated nucleus and cytoplasm segmentation of overlapping cervical cells
Z Lu, G Carneiro, AP Bradley
International Conference on Medical Image Computing and Computer-Assisted …, 2013
932013
Combining multiple dynamic models and deep learning architectures for tracking the left ventricle endocardium in ultrasound data
G Carneiro, JC Nascimento
IEEE transactions on pattern analysis and machine intelligence 35 (11), 2592 …, 2013
912013
Multi-modal cycle-consistent generalized zero-shot learning
R Felix, VBG Kumar, I Reid, G Carneiro
Proceedings of the European Conference on Computer Vision (ECCV), 21-37, 2018
892018
Deep learning and structured prediction for the segmentation of mass in mammograms
N Dhungel, G Carneiro, AP Bradley
International Conference on Medical image computing and computer-assisted …, 2015
862015
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–20